簡易檢索 / 詳目顯示

研究生: 許旭辰
Hsu, Hsu-Chen
論文名稱: IB族過渡金屬與喃、吩陽離子錯合物光解離與理論計算之探討
Photodissociation and Theoretical Studies of Au+-pyridine and M(thiophene)+ (M=Cu, Ag, Au) Complexes
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 145
中文關鍵詞: 吩啶飛行時間質譜儀光解離
外文關鍵詞: cluster, pyridine, time-of-flight mass spectrometer, photodissociation, thiophene
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在反射式飛行時間質譜儀(Reflectron Time-of- Fight Mass Spectrometer)中,利用過渡金屬離子與有機分子啶及吩反應生成錯合物,並結合光解離(photodissociation)技術,來探討金屬離子與有機分子之間的鍵能,並配合理論計算的結果,對這些錯合物作結構與鍵能方面的預測。
    在Au+-(C5H5N)中,光解離之後的產物是C5H5N+,其過程中進行光誘導電荷轉移機制,鍵能大約是59.7 kcal/mol。在計算中發現Au+-(C5H5N)分子的結構有C2v及C1結構兩種,其金屬與有機分子之間的鍵能分別為67.0 kcal/mol與43.0 kcal/mol,而在C2v及C1結構之間有一過渡態,活化能約為5.8 kcal/mol。
    在IB族過渡金屬離子與吩分子的實驗中,經由光解離所產生的產物均是C4H4S+,對Cu+-thiophene及Ag+-thiophene而言均是屬於光誘導電荷轉移機制,經鍵能換算後,Cu+-thiophene約是40 kcal/mol,而Ag+-thiophene約為30 kcal/mol。Au-thiophene+是單純的金屬離子與有機分子的斷鍵,其鍵能大約是58 kcal/mol。在理論計算方面,Cu+-thiophene及Ag+-thiophene均是屬於CS的結構,理論計算的鍵能分別是37.8及26.4 kcal/mol,而Au-thiophene+的計算結果有CS結構(能量約45.6 kcal/mol)及C1結構(能量約53.7 kcal/mol)兩種。

    We have successfully produced Au+-pyridine, M(thiophene)+ (M = Cu, Ag, Au) via combination of laser vaporization technique and supersonic molecular beam in a time-of-flight mass spectrometer. From the viewpoint of the ionization energies, these complexes were treated as Au+-pyridine, Cu+-thiophene, Ag+-thiophene and Au-thiophene+. The photodissociative ligand-to-metal charge transfer was observed in all complex ions, except Au-thiophene+ species, proceeding a simple bond cleavage after absorption photon. The photofragment spectra were recorded as a function of the laser wavelength. The continuous and structureless bands were measured in all complexes. The thresholds of the fragment appearance determined the upper limits of the ground-state binding energies with 59.7 kcal/mol for Au+-pyridine, 40 kcal/mol for Cu+-thiophene, 30 kcal/mol for Ag+-thiophene, and 58 kcal/mol for Au-thiophene+. An ab-initio approach at MP2 level was employed to optimize the geometries of all complexes and the binding energies were obtained using CCSD(T) single point calculations. The binding energies measured from both Cu and Ag complexes were consistent with the theoretical predictions. Both Cu and Ag complexes exhibited CS symmetry in structures. However, the theoretical results of both Au+-pyridine and Au-thiophene+ showed the existence of the second isomers. Regarding to Au+-pyridine complex C1 symmetry is 24 kcal/mol less stable than C2V isomer in energy. On the other hand, C1 symmetry is 8.1 kcal/mol more stable than CS isomer in energy for Au-thiophene+.

    目錄 目錄 …………………………………………………………………… Ⅰ 表目錄 ………………………………………………………………… Ⅲ 圖目錄 ………………………………………………………………… Ⅳ 第一章 緒論………………………………………………………… 01 1-1 團簇簡介……………………………………………… 02 1-2 研究目標……………………………………………… 06 第二章 飛行時間質譜儀…………………………………………… 10 2-1 飛行時間質譜儀簡介………………………………… 11 2-2 工作原理……………………………………………… 14 2-3 影響解析度的原因…………………………………… 16 2-4 兩段式加速電板……………………………………… 18 2-5 離子反射器…………………………………………… 21 第三章 實驗室儀器簡介…………………………………………… 27 3-1 實驗室儀器簡介……………………………………… 28 3-2 超音速分子束工作原理……………………………… 29 3-3 雷射…………………………………………………… 34 3-4 Rod Holder的設計…………………………………… 37 3-5 染料雷射系統………………………………………… 41 3-6 高真空系統…………………………………………… 45 3-7 時間延遲控制系統…………………………………… 49 第四章 實驗簡介…………………………………………………… 74 4-1 實驗部分……………………………………………… 75 4-2 雷射汽化離子源……………………………………… 80 4-3 實驗條件……………………………………………… 82 4-4 光解離實驗…………………………………………… 83 4-5 理論計算……………………………………………… 85 第五章 結果與討論………………………………………………… 93 5-1 金與啶實驗結果…………………………………… 94 5-2 金與啶理論計算…………………………………… 99 5-3 銅、銀、金與吩實驗結果…………………………103 5-4 銅、銀、金與吩理論計算…………………………109 5-5 IB族過渡金屬與喃吩錯合物的比較……………113 5-6 總結……………………………………………………115 參考文獻………………………………………………………………138

    參考文獻

    1. Brecque, M. L. Mosaic 1991, 22, 40.
    2. Rohlfing, E. A.; Cox, D. M.; Kaldor, A.; Johnson, K. H. J. Chem. Phys. 1984, 81, 3846.
    3. O’Brien, S. C.; Heath, J. R.; Curl, R. F.; Smalley, R. E. J. Chem. Phys. 1988, 88, 220.
    4. Rao, B. K.; Jena, P. J. Chem. Phys. 1999, 111, 1890.
    5. Koretsky, G. M.; Knickelbein, M. B. Chem. Phys. Lett. 1997, 267, 485.
    6. Kurikawa, T.; Takeda, H.; Hirano, M.; Judai, K.; Arita, T.; Nagao, S.; Nakajima, A.; Kaya, K. Organometallics 1999, 18, 1430.
    7. Yasuike, T.; Nakajima, A.; Yabushita, S.; Kaya, K. J. Phys. Chem. A 1997, 101, 5360.
    8. Yasuike, T.; Yabushita, S. J. Phys. Chem. A 1999, 103, 4533.
    9. Koretsky, G. M.; Kerns, K. P.; Nieman, G. C.; Knickelbein, M. B.; Riley, S. J. J. Phys. Chem. A 1999, 103, 1997.
    10. Knickelbein, M. B.; Yang, S. J. Chem. Phys. 1990, 93, 5760.
    11. Geusic, M. E.; Morse, M. D.; Smalley, R. E. J. Chem. Phys. 1985, 82, 590.
    12. Morse, M. D.; Geusic, M. E.; Heath, J. R.; Smalley, R. E. Chem. Phys. 1985, 83, 2293.
    13. Richtsmeier, S. C.; Parks, E. K.; Liu, K.; Pobo, L. G.; Riley, S. J. J. Chem. Phys. 1985, 82, 3659.
    14. Zakin, M. R.; Cox, D. M.; Kaldor, A. J. Phys. Chem. 1987, 91, 5224.
    15. Pierre, R. J., St.; Chronister, E. L.; El-Sayed, M. A. J. Phys. Chem. 1987, 91, 5228.
    16. Weis, P.; Kemper, P. R.; Bowers, M. T. J. Phys. Chem. A 1997, 101, 8207.
    17. Koretsky, G. M.; Knickelbein, M. B. J. Chem. Phys. 1997, 106, 9810.
    18. Knight, W. D.; Clemenger, K.; Clemenger, W.; deHeer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Phys. Rev. Lett. 1984, 52, 2141.
    19. Katakuse, I.; Ichihara, T.; Fujita, Y.; Matsuo, T.; Sakurai, T.; Matsuda, H. Int. J. Mass Spectrom. Ion Process. 1985, 67, 229.
    20. Ekardt, W. Phys. Rev. B 1984, 29, 1558.
    21. Cohen, M. L.; Knught, W. D. Physics Today 1990, Dec., 42-50.
    22. McLuckey, S. A.; Schoen, A. E.; Cooks, R. G. J. Am. Chem. Soc. 1982, 104, 848.
    23. Yang, Y. S.; Yeh, C. S. Chem. Phys. Lett. 1999, 305, 395.
    24. Crabtree, R. F. The Organometallic Chemistry of the Transition Metals, 2nd Ed.; Wiley-Interscience: New York, 1994.
    25. Bond, G. C. Heterogeneous Catalysis – Principles and Applications, 2nd Ed.; Oxford Science: New York, 1987.
    26. Nelson, D. L.; Cox, M. M. Lehninger Principle of Biochemistry, 3rd Ed.; Worth Publishers: New York, 2000.
    27. Sigel, H.; Martin, R. B. Chem. Rev. 1982, 82, 385.
    28. Gresh, N.; Garmer, D. R. J. Comput. Chem. 1996, 17, 1481.
    29. Friser, B. S. Acc. Chem. Res. 1994, 27, 353.
    30. Schröder, D.; Achwarz, H. Angew. Chem. Int. Ed. Engl. 1995, 34, 1973.
    31. Yasuike, T.; Nakajima, A.; Yabushita, S.; Kaya, K. J. Phys. Chem. A 1997, 101, 5360.
    32. Gapeev, A.; Yang, C. N.; Klippenstein, S. J.; Dunbar, R. C. J. Phys. Chem. A 2000, 104, 3246.
    33. Tsunoyama, H.; Ohshimo, K.; Yamakita, Y.; Misaizu, F.; Ohno, K. Chem. Phys. Lett. 2000, 316, 442.
    34. Nicholas, J. B.; Hay, B. P.; Dixon, D. A. J. Phys. Chem. A. 1999, 103, 1394.
    35. Stöckigt, D. J. Phys. Chem. A 1997, 101, 3800.
    36. Lewis, K. E.; Golden, D. M.; Smith, G. P. J. Am. Chem. Soc. 1984, 106, 3905.
    37. Ranatunga, D. R. A.; Freiser, B. S. Chem. Phys. Lett. 1995, 233, 319.
    38. Yeh, C. S.; Willey, K. F.; Robbins, D. L.; Duncan, M. A. J. Phys. Chem. 1992, 96, 7833.
    39. Scurlock, C. T.; Pullins, S. H.; Reddic, J. E.; Duncan, M. A. J. Chem. Phys. 1996, 104, 4591.
    40. Uppal, J. S.; Staley, R. H. J. Am. Chem. Soc. 1982, 104, 1238.
    41. Willey, K. F.; Cheng, P. Y.; Pearce, K. D.; Duncan, M. A. J. Phys. Chem. 1990, 94, 4769.
    42. Willey, K. F.; Cheng, P. Y.; Bishop, M. B.; Duncan, M. A. J. Am. Chem. Soc. 1991, 113, 4721.
    43. Willey, K. F.; Yeh, C. S.; Robbins, D. L.; Duncan, M. A. J. Phys. Chem. 1992, 96, 9106.
    44. Nakajima, A.; Kaya, K. J. Phys. Chem. A 2000, 104, 176.
    45. Kurikawa, T.; Takeda, H.; Hirano, M.; Judai, K.; Arita, T.; Nagao, S.; Nakajima, A.; Kaya, K. Organometallics 1999, 18, 1430.
    46. Dunbar, R. C. J. Phys. Chem. A 1998, 102, 8946.
    47. Wang, X.; Becker, H.; Hopkinson, A. C.; March, R. E.; Scott, L. T.; Böhme, D. K. Int. J. Mass Spectrom. Ion. Process. 1997, 161, 69.
    48. Pozniak, B. P.; Dunbar, R. C. J. Am. Chem. Soc. 1997, 119, 10439.
    49. Foster, N. R.; Grieves, G. A.; Buchanan, J. W.; Flynn, N. D.; Duncan, M. A. J. Phys. Chem. A 2000, 104, 11055.
    50. Buchanan, J. W.; Grieves, G. A.; Flynn, N. D.; Duncan, M. A. Int. J. Mass Spectrom. 1999, 185-187, 617.
    51. Nakajima, A.; Nagao, S.; Takeda, H.; Kurikawa, T.; Kaya, K. J. Chem. Phys. 1997, 107, 6491.
    52. Nagao, S.; Negishi, Y.; Kato, A.; Nakamura, Y.; Nakajima, A.; Kaya, K. J. Phys. Chem. A 1999, 103, 8909.
    53. Nagao, S.; Kurikawa, T.; Miyajima, K.; Nakajima, A.; Kaya, K. J. Phys. Chem. A 1998, 102, 4495.
    54. Kurikawa, T.; Nagao, S.; Miyajima, K.; Nakajima, A.; Kaya, K. J. Phys. Chem. A 1998, 102, 1743.
    55. Branz, W.; Billas, I. M. L.; Malinowski, N.; Tast, F.; Heinebrodt, M.; Martin, T. P. J. Chem. Phys. 1998, 109, 3425.
    56. Su, P. H.; Yeh, C. S. Chem. Phys. Lett. 2000, 331, 420.
    57. Su, P. H.; Lin, F. W.; Yeh, C. S. J. Phys. Chem. A 2001, 105, 9643.
    58. Lide, D. R. CRC Handbook of Chemistry and Physics, 81st Ed.; CRC press: London, 2000.
    59. Stephens, W. E. Phys. Rev. 1946, 69, 691.
    60. Wiley, W. C.; McLaren, I. H. Rev. Sci. Instrum. 1955, 26, 1150.
    61. Katzenstein, H. S.; Friedland, S. S. Rev. Sci. Instrum. 1955, 26, 234.
    62. Mamyrin, B. A.; Karataev, V. I.; Shmikk, D. V.; Zagulin, V. A. Soviet Phys., JEPT. 1973, 37, 45.
    63. Karas, M.; Bahr, U.; Ingendoh, A.; Hellenkamp, F. Angew. Chem. Int. Ed. Engl. 1989, 28, 760.
    64. Watson, J. T. Introduction to Mass Spectrometry, 3rd Ed.; Lippincott- Raven: Philadelphia, PA, 1997
    65. Cornett, D. C.; Peschke, M.; LaiHing, K.; Cheng, P. Y.; Willey, K. F.; Duncan, M. A. Rev. Sci. Instrum. 1992, 63, 2177.
    66. Cotter, R. J. Time-of-Flight Mass Spectrometry; American Chemical Society: Washington, DC, 1994.
    67. Pilgrim, J. S.; Yeh, C. S.; Duncan, M. A. Chem. Phys. Lett. 1993, 210, 322.
    68. Yeh, C. S.; Willey, K. F.; Robbins, D. L.; Pilgrim, J. S.; Duncan, M. A. Chem. Phys. Lett. 1992, 196, 233.
    69. Honig, R. E. Appl. Phys. Lett. 1963, 3, 8.
    70. Smalley, R. E.; Wharton, L.; Levy, D. H. J. Chem. Phys. 1975, 63, 4977.
    71. Smalley, R. E.; Levy, D. H.; Wharton, L. J. Chem. Phys. 1976, 64, 3266.
    72. Liverman, M. G.; Beck, S. M.; Monts, D. L.; Smalley, R. E. J. Chem. Phys. 1979, 70, 192.
    73. Dietz, T. G.; Duncan, M. A.; Powers, D. E.; Smalley, R. E. J. Chem. Phys. 1981, 74, 6511.
    74. Rohlfing, E. A.; Cox, D. M.; Kaldor, A. J. Chem. Phys. 1984, 81, 3322.
    75. LaiHing, K.; Cheng, P. Y.; Duncan, M. A. J. Phys. Chem. 1987, 91, 6521.
    76. Anderson, M.; Persson, J. L.; Rosen, A. J. Phys. Chem. 1996, 100, 2222.
    77. Atkins, P. W. Physical Chemistry, 6th Ed.; Oxford: New York, 1998.
    78. Aksel, M. H.; Eralp, O. C. Gas Dynamics; Prentice-Hall: New York, 1994.
    79. McClelland, G. M.; Saenger, K. L.; Valentini, J. J.; Herschbach, D. R. J. Phys. Chem. 1979, 83, 947.
    80. de Leeuw, J. H. Rarefied gas dynamics, 4th Symposium, Vol. 2; Academic: New York, 1966.
    81. Gentry, W. R.; Giese, C. F. Rev. Sci. Instrum. 1978, 49, 595.
    82. Svelto, O. Principles of Lasers, 2nd Ed.; Plenum: New York, 1982.
    83. Smith, W. V.; Sorokin, P. P. The Laser; McGraw: New York, 1966.
    84. Demtröder, W. Laser Spectroscopy; Springer: Berlin, 1973.
    85. Hoffmann, E. D.; Charette, J.; Stroobant, V. Mass Spectrometry; Wiley-Interscience, New York, 1996.
    86. Hopkins, J. B.; Langridge-Smith, P. R. R.; Morse, M. D.; Smalley, R. E. J. Chem. Phys. 1983, 78, 1627.
    87. Honig, R. E.; Woolston, J. R. Appl. Phys. Lett. 1963, 2, 138.
    88. Smalley, R. E. Laser Chem. 1983, 2, 167.
    89. Milani, P.; deHeer, W. A. Rev. Sci. Instrum. 1990, 61, 1835.
    90. Maruyama, S.; Anderson, L. R.; Smalley, R. E. Rev. Sci. Instrum. 1990, 61, 3686.
    91. Pilgrim, J. S.; Yeh, C. S.; Berry, K. R.; Duncan, M. A. J. Chem. Phys. 1994, 100, 7945.
    92. O’Brien, S. C.; Liu, Y.; Zhang, Q.; Heath, J. R.; Tittel, F. K.; Curl, R. F.; Smalley, R. E. J. Chem. Phys. 1986, 84, 7074.
    93. Liu, Y.; Zhang, Q.; Tittel, F. K.; Curl, R. F.; Smalley, R. E. J. Chem. Phys. 1986, 85, 7434.
    94. LaiHing, K.; Wheeler, R. G.; Wilson, W. L.; Duncan, M. A. J. Chem. Phys. 1987, 87, 3401.
    95. Corney, A. Atomic and Laser Spectroscopy; Oxford: New York, 1977.
    96. Chambers, A.; Fitch, B. K.; Halliday, B. S. Basic Vacuum Technology, 2nd Ed.; Institute of Physics: London, 1998.
    97. Roth, A. Vacuum Technology, 3rd Ed.; North-Holland: New York, 1990.
    98. Vertes, A.; Gijbels, R.; Adams, F. Laser Ionization Mass Analysis; Wiley-Interscience: New York, 1993.
    99. Zakin, M. R.; Cox, D. M.; Brickman, R. O.; Kaldor, A. J. Phys. Chem. 1988, 93, 3511.
    100. Cassady, C. J.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 1566.
    101. Ma, N. L. Chem. Phys. Lett. 1998, 297, 230.
    102. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
    103. Foresman, J. B.; Æleen Frisch Exploring Chemistry with Electronic Structure Methods, 2nd Ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.
    104. Levine, I. N. Quantum Chemistry, 5th Ed.; Prentice-Hall: New Jersey, 2000.
    105. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
    106. Pyykkö, P. Chem. Rev. 1988, 88, 563.
    107. Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmannm, R.; Veldkamp, A.; Frenking, G.Chem. Phys. Lett. 1993, 208, 111.
    108. Ma, N. L.; Ng, K. M.; Tsang, C. W. Chem. Phys. Lett. 1997, 277, 306.
    109. Moore, C. E. Atomic Energy Levels; National Bureau of Standards: Washington, DC, 1971.
    110. Herzberg, G. Electronic Spectra and Electronic Structure of Polyatomic Molecules; Van Norstrand Reinhold: New York, 1966.
    111. Ho, Y. P.; Dunbar, R. C. Int. J. Mass Spectrom. 1999, 182/183, 175.
    112. Yang, Y. S.; Hsu, W. Y.; Lee, H. F.; Huang Y. C.; Yeh, C. S.; Hu, C. H. J. Phys. Chem. A 1999, 103, 11287.
    113. Yamada, H.; Nagata, H.; Toba, K. Sur. Sci. 1987, 189, 269.
    114. Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics, 2nd Ed.; Prentice-Hall: New Jersey, 1999.
    115. Pyykkö, P. Chem. Rev. 1988, 88, 563.
    116. Hertwig, R. H.; Koch, W.; Schöder, D.; Schwarz, H.; Hrusák, J.; Schwerdtfeger, P. J. Phys. Chem. 1996, 100, 12253.
    117. (a)Meyer, F.; Khan, F. A.; Armentrout, P. B. J. Am. Chem. Soc. 1995, 117, 9740. (b)Schöder, D.; Schwarz, H.; Pyykkö, P. Inorg. Chem. 1998, 37, 624.
    118. Hrusák, J.; Hertwig, R. H.; Schöder, D.; Schwerdtfeger, P.; Koch, W.; Schwarz, H. Organometallics 1995, 14, 1284.
    119. (a)Jarrold, M. F.; Misev, L.; Bowers, T. J. Chem. Phys. 1984, 81, 4369. (b)Kim, H. Y.; Kuo, C. H.; Bowers, M. T. J. Chem. Phys. 1987, 87, 2667.
    120. Heinemann, C.; Cornehl, H. H.; Schwarz, H. J. Organometallic Chem. 1995, 501, 201.
    121. Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
    122. Demuth, J. E.; Christmann, K.; Sanda, P. N. Chem. Phys. Lett. 1980, 76, 201.
    123. Creighton, J. A. Sur. Sci. 1983, 124, 209.
    124. Holland, P. M.; Castleman, A. W. J. Chem. Phys. 1982, 76, 4195.
    125. Henson, N. J.; Hay, P. J.; Redondo, A. Inorg. Chem. 1999, 38, 1618.
    126. Dargel. T. K.; Hertwig, R. H.; Koch, W. Mol. Phys. 1999, 96, 583.
    127. Dunbar, R. C.; Honovich, J. P. Int. J. Mass Spectrom. Ion Processes, 1984, 58, 25.
    128. (a)Wiegand, B. C.; Friend, C. M. Chem. Rev. 1992, 92, 491. (b)Choi, M. G.; Angelici, R. J. Organometallics 1991, 10, 2436. (c)Draganjac, M.; Ruffung, C. J.; Rauchfuss, T. B. Organometallics 1985, 4, 1909. (d)Chen, J.; Angelici, R. J. Organometallics 1989, 8, 2277. (e)Ogilvy, A. E.; Skaugset, E.; Rauchfuss, T. B. Organometallics 1989, 8, 2739.
    129. (a)Imanishi, A.; Yagi, S.; Yokoyama, T.; Kitajima, Y.; Ohta, T. J. Electron Spectrosc. Relat. Phenom. 1996, 80, 151. (b)Terada, S.; Yokoyama, T.; Sakano, M.; Imanishi, A.; Kitajima, Y.; Kiguchi, M.; Okamoto, Y.; Ohta, T. Sur. Sci. 1998, 414, 107.
    130. (a)Jubert, A. H.; Pis-Diez, R.; Estiú, G. L.; Ruette, F. J. Mol. Struct. Theo. Chem. 1999, 465, 111. (b)Rodriguez, J. A. J. Phys. Chem. A 1997, 101, 7525. (c)Mittendorfer, F.; Hanfner, J. Sur. Sci. 2001, 492, 27.
    131. Elfeninat, F.; Fredriksson, C.; Sacher, E.; Selmani, A. J. Chem. Phys. 1995, 102, 6153.
    132. Mitchell, P. C. H.; Raos, G. M.; Karadakov, P. B.; Gerratt, J.; Cooper, D. L. J. Chem. Soc. Faraday Trans. 1995, 91, 749.
    133. Qiao, M. H.; Cao, Y.; Tao, F.; Liu, Q.; Deng, J. F.; Xu, G. Q. J. Phys. Chem. B 2000, 104, 11211.
    134. Acheson, R. M. An Introduction to the Chemistry of Heterocyclic Compounds, 2nd Ed; Interscience: New York, 1967.
    135. Nanayakkara, V. K.; Freiser, B. S. J. Mass Spectrom. 1997, 32, 475.
    136. Bakhtiar, R.; Jacobson, D. B. J. Am. Soc. Mass Spectrom. 1996, 7, 938.
    137. Keshari, V.; Wijekoon, M. K. P.; Prasad, P. N.; Karna, S. P. J. Phys. Chem. 1995, 99, 9045.

    下載圖示 校內:2003-07-05公開
    校外:2003-07-05公開
    QR CODE