| 研究生: |
洪媺媃 Hung, Mei-Jou |
|---|---|
| 論文名稱: |
利用牛血清蛋白包覆的金奈米團簇檢測兒茶酚類似物 Bovine Serum Albumin-Protected Gold Nanoclusters for the Detection of Catechol analogues |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 牛血清白蛋白 、金奈米團簇 、檢測應用 、兒茶酚 |
| 外文關鍵詞: | Bovine serum albumin, Gold nanocluster, Sensor, Catechol |
| 相關次數: | 點閱:55 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去十年以來,由於蛋白質包覆的金奈米團簇具有優異的光穩定性以及良好的生物相容性,因此在醫學和奈米生物技術領域中備受關注,且也被廣泛應用於物質的檢測,而在本研究中,我們以光穩定、無毒以及具有紅色螢光放射的牛血清蛋白包覆金奈米團簇 (BSA-AuNCs) 選擇性的檢測兒茶酚類似物質。
首先我們利用螢光光譜儀、UV吸收光譜儀、MALDI-TOF質譜儀以及XPS對於合成後的BSA-AuNCs進行光學性質、質量及組成型態的鑑定,以確認BSA-AuNCs的形成,合成後的BSA-AuNCs整體質量大約為71 kDa,且具有635nm的螢光放射。
實驗將兒茶酚類似物以鐵 (III) 離子氧化為鄰苯醌後與BSA-AuNCs反應,並觀察到了其螢光的淬滅,並藉由測量其螢光淬滅及UV吸收,可以選擇性的偵測兒茶酚類似物,再來我們更以蛋白質體學中由下而上的水解酵素法分析樣品,推測造成BSA-AuNCs螢光淬滅的原因主要來自氧化後的兒茶酚類似物與金團簇核心附近的BSA基板之間的親和作用力,進而發生金團簇螢光與兒茶酚類似物-鐵(III)錯合物及鄰苯醌之間的螢光共振能量轉移 ( FRET ) 和電子轉移 (Electron transfer)效應,造成螢光的淬滅。此檢測系統具有應用於真實樣品的可行性,在未來我們欲將其用於偵測茶葉中的兒茶素或添加於食用植物油中的沒食子酸丙脂。
In the past decade, protein-protected gold nanoclusters have attracted much attention in the fields of medicine and nanobiotechnology due to their excellent photostability and good biocompatibility. It also was widely used in sensing applications. In this study, we utilized the fluorescent gold nanocluster synthesized by bovine serum albumin to detect catechol analogues.
We found that the red fluorescence of BSA-AuNCs was quenched by catechol analogues after adding iron (III). This sensing system can selectively detect the catechol analogues by measuring the fluorescence quenching and UV absorbance.
BSA-AuNCs reacted with oxidized catechol analogues were then analyzed by proteomics-based mass spectrometry techniques. It is speculated that the mechanism for the fluorescence quenching of BSA-AuNCs is mainly due to the fluorescence resonance energy transfer (FRET) between Au core and catechol analogues - iron(III) complex, and electron transfer effect between Au core and catechol quinone. We expect our developed sensing system could be applied to real samples, such as catechins in tea or propyl gallate in vegetable oil.
1. Häkkinen, H., The gold–sulfur interface at the nanoscale. Nature Chemistry 2012, 4, 443.
2. Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble-metal quantum dots. Annual review of physical chemistry 2007, 58, 409-31.
3. Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R., Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. Journal of the American Chemical Society 2008, 130 (18), 5883-5.
4. Yu, P.; Wen, X.; Toh, Y.-R.; Ma, X.; Tang, J., Fluorescent Metallic Nanoclusters: Electron Dynamics, Structure, and Applications. Particle & Particle Systems Characterization 2015, 32 (2), 142-163.
5. Chen, L. Y.; Wang, C. W.; Yuan, Z.; Chang, H. T., Fluorescent gold nanoclusters: recent advances in sensing and imaging. Analytical chemistry 2015, 87 (1), 216-29.
6. Yu, Y.; Yao, Q.; Luo, Z.; Yuan, X.; Lee, J. Y.; Xie, J., Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale 2013, 5 (11), 4606-20.
7. Maya, L.; Muralidharan, G.; Thundat, T. G.; Kenik, E. A., Polymer-Mediated Assembly of Gold Nanoclusters. Langmuir : the ACS journal of surfaces and colloids 2000, 16 (24), 9151-9154.
8. Zheng, J.; Petty, J. T.; Dickson, R. M., High quantum yield blue emission from water-soluble Au8 nanodots. Journal of the American Chemical Society 2003, 125 (26), 7780-1.
9. Chevrier, D. M.; Chatt, A.; Zhang, P., Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. Journal of Nanophotonics 2012, 6 (1), 1-17, 17.
10. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. Journal of the American Chemical Society 2009, 131 (3), 888-9.
11. Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor. The Analyst 2010, 135 (6), 1406-10.
12. Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T., Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2 (12), 2769-76.
13. Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Analytical chemistry 2011, 83 (4), 1193-6.
14. Yan, L.; Cai, Y.; Zheng, B.; Yuan, H.; Guo, Y.; Xiao, D.; Choi, M. M. F., Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J. Mater. Chem. 2012, 22 (3), 1000-1005.
15. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., ph-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission. Advanced Functional Materials 2011, 21 (18), 3508-3515.
16. Kawasaki, H.; Yoshimura, K.; Hamaguchi, K.; Arakawa, R., Trypsin-stabilized fluorescent gold nanocluster for sensitive and selective Hg2+ detection. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry 2011, 27 (6), 591-6.
17. Liu, C. L.; Wu, H. T.; Hsiao, Y. H.; Lai, C. W.; Shih, C. W.; Peng, Y. K.; Tang, K. C.; Chang, H. W.; Chien, Y. C.; Hsiao, J. K.; Cheng, J. T.; Chou, P. T., Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angewandte Chemie 2011, 50 (31), 7056-60.
18. Lin, C. A.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I.; Parak, W. J.; Chang, W. H., Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS nano 2009, 3 (2), 395-401.
19. Wang, H. H.; Lin, C. A.; Lee, C. H.; Lin, Y. C.; Tseng, Y. M.; Hsieh, C. L.; Chen, C. H.; Tsai, C. H.; Hsieh, C. T.; Shen, J. L.; Chan, W. H.; Chang, W. H.; Yeh, H. I., Fluorescent gold nanoclusters as a biocompatible marker for in vitro and in vivo tracking of endothelial cells. ACS nano 2011, 5 (6), 4337-44.
20. Li, H.; Zhu, W.; Wan, A.; Liu, L., The mechanism and application of the protein-stabilized gold nanocluster sensing system. The Analyst 2017, 142 (4), 567-581.
21. Wu, X.; He, X.; Wang, K.; Xie, C.; Zhou, B.; Qing, Z., Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010, 2 (10), 2244-9.
22. Shang, L.; Nienhaus, G. U., Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophysical reviews 2012, 4 (4), 313-322.
23. Wang, P.; Lin, L.; Guo, Z.; Chen, J.; Tian, H.; Chen, X.; Yang, H., Highly Fluorescent Gene Carrier Based on Ag-Au Alloy Nanoclusters. Macromolecular bioscience 2016, 16 (1), 160-7.
24. Dutta, D.; Chattopadhyay, A.; Ghosh, S. S., Cationic BSA Templated Au–Ag Bimetallic Nanoclusters As a Theranostic Gene Delivery Vector for HeLa Cancer Cells. ACS Biomaterials Science & Engineering 2016, 2 (11), 2090-2098.
25. Zheng, Y.; Lai, L.; Liu, W.; Jiang, H.; Wang, X., Recent advances in biomedical applications of fluorescent gold nanoclusters. Advances in colloid and interface science 2017, 242, 1-16.
26. Peters, T., Serum Albumin. In Advances in Protein Chemistry, Anfinsen, C. B.; Edsall, J. T.; Richards, F. M., Eds. Academic Press: 1985; Vol. 37, pp 161-245.
27. <2Quantitation of Peptides and Amino Acids with a Synergy™HT using UV Fluorescence.pdf>.
28. Majorek, K. A.; Porebski, P. J.; Dayal, A.; Zimmerman, M. D.; Jablonska, K.; Stewart, A. J.; Chruszcz, M.; Minor, W., Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular immunology 2012, 52 (3-4), 174-82.
29. Varga, N.; Hornok, V.; Sebok, D.; Dekany, I., Comprehensive study on the structure of the BSA from extended-to aged form in wide (2-12) pH range. International journal of biological macromolecules 2016, 88, 51-8.
30. Yu, Y.; Luo, Z.; Teo, C. S.; Tan, Y. N.; Xie, J., Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chemical communications 2013, 49 (84), 9740-2.
31. Zheng, J.; Zhou, C.; Yu, M.; Liu, J., Different sized luminescent gold nanoparticles. Nanoscale 2012, 4 (14), 4073.
32. Wu, Z.; Jin, R., On the ligand's role in the fluorescence of gold nanoclusters. Nano letters 2010, 10 (7), 2568-73.
33. Wen, X.; Yu, P.; Toh, Y.-R.; Tang, J., Structure-Correlated Dual Fluorescent Bands in BSA-Protected Au25 Nanoclusters. The Journal of Physical Chemistry C 2012, 116 (21), 11830-11836.
34. Dixon, J. M.; Egusa, S., Conformational Change-Induced Fluorescence of Bovine Serum Albumin-Gold Complexes. Journal of the American Chemical Society 2018, 140 (6), 2265-2271.
35. Chaudhari, K.; Xavier, P. L.; Pradeep, T., Understanding the Evolution of Luminescent Gold Quantum Clusters in Protein Templates. ACS nano 2011, 5 (11), 8816-8827.
36. Xu, Y.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y., The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 2014, 6 (3), 1515-24.
37. Mudedla, S. K.; Singam, E. R. A.; Vijay Sundar, J.; Pedersen, M. N.; Murugan, N. A.; Kongsted, J.; Ågren, H.; Subramanian, V., Enhancement of Internal Motions of Lysozyme through Interaction with Gold Nanoclusters and its Optical Imaging. The Journal of Physical Chemistry C 2014, 119 (1), 653-664.
38. Hsu, Y. C.; Hung, M. J.; Chen, Y. A.; Wang, T. F.; Ou, Y. R.; Chen, S. H., Identifying Reducing and Capping Sites of Protein-Encapsulated Gold Nanoclusters. Molecules 2019, 24 (8).
39. Christodoulou, J.; Sadler, P. J.; Tucker, A., A New Structural Transition of Serum Albumin Dependent on the State of Cys34. European Journal of Biochemistry 1994, 225 (1), 363-368.
40. Das, T.; Ghosh, P.; Shanavas, M. S.; Maity, A.; Mondal, S.; Purkayastha, P., Protein-templated gold nanoclusters: size dependent inversion of fluorescence emission in the presence of molecular oxygen. Nanoscale 2012, 4 (19), 6018-24.
41. Simms, G. A.; Padmos, J. D.; Zhang, P., Structural and electronic properties of protein/thiolate-protected gold nanocluster with “staple” motif: A XAS, L-DOS, and XPS study. The Journal of chemical physics 2009, 131 (21), 214703.
42. Russell, B. A.; Kubiak-Ossowska, K.; Mulheran, P. A.; Birch, D. J.; Chen, Y., Locating the nucleation sites for protein encapsulated gold nanoclusters: a molecular dynamics and fluorescence study. Physical chemistry chemical physics : PCCP 2015, 17 (34), 21935-41.
43. Xie, J.; Zheng, Y.; Ying, J. Y., Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions. Chemical communications 2010, 46 (6), 961-3.
44. Hu, D.; Sheng, Z.; Gong, P.; Zhang, P.; Cai, L., Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters. The Analyst 2010, 135 (6), 1411-6.
45. Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chemistry, an Asian journal 2013, 8 (5), 858-71.
46. Durgadas, C. V.; Sharma, C. P.; Sreenivasan, K., Fluorescent gold clusters as nanosensors for copper ions in live cells. The Analyst 2011, 136 (5), 933-40.
47. Aswathy, B.; Sony, G., Cu2+ modulated BSA–Au nanoclusters: A versatile fluorescence turn-on sensor for dopamine. Microchemical Journal 2014, 116, 151-156.
48. Liu, J.-M.; Cui, M.-L.; Jiang, S.-L.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zhang, L.-H.; Zheng, Z.-Y., BSA-protected gold nanoclusters as fluorescent sensor for selective and sensitive detection of pyrophosphate. Analytical Methods 2013, 5 (16), 3942.
49. Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Advanced Functional Materials 2010, 20 (6), 951-956.
50. Cui, M.-L.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zheng, Z.-Y.; Zhang, L.-H.; Jiang, S.-L., A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2−. Sensors and Actuators B: Chemical 2013, 188, 53-58.
51. Li, H.-W.; Yue, Y.; Liu, T.-Y.; Li, D.; Wu, Y., Fluorescence-Enhanced Sensing Mechanism of BSA-Protected Small Gold-Nanoclusters to Silver(I) Ions in Aqueous Solutions. The Journal of Physical Chemistry C 2013, 117 (31), 16159-16165.
52. Hu, L.; Han, S.; Parveen, S.; Yuan, Y.; Zhang, L.; Xu, G., Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosensors & bioelectronics 2012, 32 (1), 297-9.
53. Zhang, J.; Zhang, Z.; Nie, X.; Zhang, Z.; Wu, X.; Chen, C.; Fang, X., A Label-Free Gold Nanocluster Fluorescent Probe for Protease Activity Monitoring. Journal of Nanoscience and Nanotechnology 2014, 14 (6), 4029-4035.
54. Hemmateenejad, B.; Shakerizadeh-shirazi, F.; Samari, F., BSA-modified gold nanoclusters for sensing of folic acid. Sensors and Actuators B: Chemical 2014, 199, 42-46.
55. Ju, Y. J.; Li, N.; Liu, S. G.; Han, L.; Xiao, N.; Luo, H. Q.; Li, N. B., Ratiometric fluorescence method for malachite green detection based on dual-emission BSA-protected gold nanoclusters. Sensors and Actuators B: Chemical 2018, 275, 244-250.
56. Schweigert, N.; Zehnder, A. J. B.; Eggen, R. I. L., Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environmental Microbiology 2001, 3 (2), 81-91.
57. Kimura, H.; Sawada, T.; Oshima, S.; Kozawa, K.; Ishioka, T.; Kato, M., Toxicity and Roles of Reactive Oxygen Species. Current Drug Targets - Inflammation & Allergy 2005, 4 (4), 489-495.
58. Maleki, N.; Kashanian, S.; Maleki, E.; Nazari, M., A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. Biochemical Engineering Journal 2017, 128, 1-11.
59. Govindaraju, S.; Ankireddy, S. R.; Viswanath, B.; Kim, J.; Yun, K., Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid. Scientific reports 2017, 7, 40298.
60. Martorana, A.; Koch, G., "Is dopamine involved in Alzheimer's disease?". Frontiers in aging neuroscience 2014, 6, 252.
61. Chang, M., Dual roles of estrogen metabolism in mammary carcinogenesis. BMB reports 2011, 44 (7), 423-34.
62. Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J.; Jankowiak, R.; Muti, P.; Rogan, E.; Russo, J.; Santen, R.; Sutter, T., Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochimica et biophysica acta 2006, 1766 (1), 63-78.
63. Vikraman, A. E.; Rasheed, Z.; Rajith, L.; Lonappan, L. A.; Krishnapillai, G. K., MWCNT-Modified Gold Electrode Sensor for the Determination of Propyl Gallate in Vegetable Oils. Food Analytical Methods 2012, 6 (3), 775-780.
64. Yang, J.; Cohen Stuart, M. A.; Kamperman, M., Jack of all trades: versatile catechol crosslinking mechanisms. Chemical Society reviews 2014, 43 (24), 8271-98.
65. Bibhuti Bhusan Mishra, B. x., Polyphonel Oxidases: Biochemical and Molecular Characterization, Distribution, Role and its Control. Enzyme Engineering 2016, 05 (01).
66. Friedrich, L. C.; Zanta, C. L. d. P. e. S.; Machulek Jr., A.; Silva, V. d. O.; Quina, F. H., Interference of inorganic ions on phenol degradation by the Fenton reaction. Scientia Agricola 2012, 69, 347-351.
67. Danilewicz, J. C., Interaction of Sulfur Dioxide, Polyphenols, and Oxygen in a Wine-Model System: Central Role of Iron and Copper. American Journal of Enology and Viticulture 2007, 58 (1), 53.
68. Marrubini, G.; Calleri, E.; Coccini, T.; Castoldi, A. F.; Manzo, L., Direct Analysis of Phenol, Catechol and Hydroquinone in Human Urine by Coupled-Column HPLC with Fluorimetric Detection. Chromatographia 2005, 62 (1-2), 25-31.
69. Chen, M.; Xia, Q.; Liu, M.; Yang, Y., Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils. Journal of food science 2011, 76 (1), C98-103.
70. Todorovic, R.; Devanesan, P.; Higginbotham, S.; Zhao, J.; Gross, M. L.; Rogan, E. G.; Cavalieri, E. L., Analysis of potential biomarkers of estrogen-initiated cancer in the urine of Syrian golden hamsters treated with 4-hydroxyestradiol. Carcinogenesis 2001, 22 (6), 905-911.
71. Piwowarska, J.; Radowicki, S.; Pachecka, J., Simultaneous determination of eight estrogens and their metabolites in serum using liquid chromatography with electrochemical detection. Talanta 2010, 81 (1-2), 275-80.
72. Lourenço, E. L. B.; Ferreira, A.; Pinto, E.; Yonamine, M.; Farsky, S. H. P., On-Fiber Derivatization of SPME Extracts of Phenol, Hydroquinone and Catechol with GC-MS Detection. Chromatographia 2006, 63 (3-4), 175-179.
73. Canbay, E.; Akyilmaz, E., Design of a multiwalled carbon nanotube-Nafion-cysteamine modified tyrosinase biosensor and its adaptation of dopamine determination. Analytical biochemistry 2014, 444, 8-15.
74. Cui, M.; Huang, J.; Wang, Y.; Wu, Y.; Luo, X., Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene-carbon nanotube composites. Biosensors & bioelectronics 2015, 68, 563-569.
75. Li, Y.; Huang, H.; Ma, Y.; Tong, J., Highly sensitive fluorescent detection of dihydroxybenzene based on graphene quantum dots. Sensors and Actuators B: Chemical 2014, 205, 227-233.
76. Pereira da Silva Neves, M. M.; Gonzalez-Garcia, M. B.; Perez-Junquera, A.; Hernandez-Santos, D.; Fanjul-Bolado, P., Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate. Luminescence : the journal of biological and chemical luminescence 2018, 33 (3), 552-558.
77. Teng, Y.; Jia, X.; Li, J.; Wang, E., Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Analytical chemistry 2015, 87 (9), 4897-902.
78. Jhan, S. Y.; Huang, L. J.; Wang, T. F.; Chou, H. H.; Chen, S. H., Dimethyl Labeling Coupled with Mass Spectrometry for Topographical Characterization of Primary Amines on Monoclonal Antibodies. Analytical chemistry 2017, 89 (7), 4255-4263.
79. Raut, S.; Chib, R.; Butler, S.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I., Evidence of energy transfer from tryptophan to BSA/HSA protected gold nanoclusters. Methods and Applications in Fluorescence 2014, 2 (3), 035004.
80. Schaaff, T. G.; Whetten, R. L., Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions. The Journal of Physical Chemistry B 2000, 104 (12), 2630-2641.
81. Le Guevel, X.; Daum, N.; Schneider, M., Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 2011, 22 (27), 275103.
82. Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M., Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy. The Journal of Physical Chemistry C 2011, 115 (22), 10955-10963.
83. Ku, M. C.; Fang, C. M.; Cheng, J. T.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, C. C.; Tai, J. H.; Chen, S. H., Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Scientific reports 2016, 6, 28804.
84. Li, Y.; Jongberg, S.; Andersen, M. L.; Davies, M. J.; Lund, M. N., Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free radical biology & medicine 2016, 97, 148-157.
85. Yang, S.; Jiang, Z.; Chen, Z.; Tong, L.; Lu, J.; Wang, J., Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchimica Acta 2015, 182 (11-12), 1911-1916.
86. Zhang, P.; Wang, Y.; Yin, Y., Facile Fabrication of a Gold Nanocluster-Based Membrane for the Detection of Hydrogen Peroxide. Sensors 2016, 16 (7).
87. Kato, Y.; Suga, N., Covalent adduction of endogenous and food-derived quinones to a protein: its biological significance. J Clin Biochem Nutr 2018, 62 (3), 213-220.
88. Wang, L.; Chen, H.; Wang, H.; Wang, F.; Kambam, S.; Wang, Y.; Zhao, W.; Chen, X., A fluorescent probe with high selectivity to glutathione over cysteine and homocysteine based on positive effect of carboxyl on nucleophilic substitution in CTAB. Sensors and Actuators B: Chemical 2014, 192, 708-713.
89. Cho, Y.; Lee, W. H.; Kim, H., Preparation of a Carbon-Supported Pt-Ni Bimetallic Catalyst with a Pt-Rich Shell Using a Dopamine as Protective Coating. Journal of The Electrochemical Society 2016, 164 (2), F65-F70.
90. Sang, S.; Yang, I.; Buckley, B.; Ho, C.-T.; Yang, C. S., Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (-)-epigallocatechin-3-gallate: Studied by real-time mass spectrometry combined with tandem mass ion mapping. Free Radical Biology and Medicine 2007, 43 (3), 362-371.
91. Park, J. E.; Kim, T. E.; Shin, K. H., Quantitative Analysis of Four Catechins from Green Tea Extract in Human Plasma Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry for Pharmacokinetic Studies. Molecules 2018, 23 (4).