研究生: |
謝雅竹 Hsieh, Ya-Chu |
---|---|
論文名稱: |
二苯并[de,mn]稠四苯類多環芳香烴之合成、結構分析及物性探討 Syntheses, Structural Analyses, and Physical Properties of Zethrene-Based Arenes |
指導教授: |
吳耀庭
Wu, Yao-Ting |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 239 |
中文關鍵詞: | 多環芳香烴 、芳香性 、二苯并[de,mn]稠四苯 、金屬催化 、自由基 、鎳 、鈀 、雙聚合 |
外文關鍵詞: | Polyarenes, Aromaticity, Zethrene, Metal-catalyzed, Radical, Nickel, Palladium, Dimerization |
相關次數: | 點閱:123 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究主題為二苯并[de,mn]稠四苯(18, dibenzo[de,mn]naphthacene, zethrene)之-共軛衍生物的合成、結構與性質的探討。在鎳金屬催化系統中,9-乙炔基-1-碘蒽39進行二聚合反應生成5,14-雙取代二萘并[3,2,1-de:3',2',1'-mn]稠四苯(24, 5,14-disubstituteddinaphtho[3,2,1-de:3',2',1'-mn]naphthacene)。二萘并[3,2,1-de:3',2',1'-mn]稠四苯(24c)則是藉由5,14-雙(三甲基矽)二萘并[3,2,1-de:3',2',1'-mn]稠四苯(24b)進行去矽化反應而得。24的取代基不僅造成分子結構扭曲,更影響了雙自由基性質(biradical property):雙取代衍生物24a和24b皆為閉殼層分子(closed-shell),而無取代的24c則為具有單態雙自由基的分子(singlet biradical ground state)。在此研究中,使用變溫核磁共振氫光譜、電子順磁共振光譜儀、超導量子干涉震動磁量儀等實驗方法搭配理論計算進行雙自由基性質的探討。化合物24c具有不同於一般雙自由基分子的物理行為:氫光譜中未呈現訊號加寬的現象以及電子順磁共振光譜儀的訊號強度隨溫度上升而下降。由理論計算分析背後成因,推測24c的分子構型改變可能影響雙自由基性質。由超導量子干涉震動磁量儀所測得之變溫磁化率數據,利用Bleaney–Bowers 方程式以及alternating Heisenberg chain model進行擬合,可得24c的單重態至三重態的能隙 (ES-T),數值分別為2.13及1.42千卡/莫耳。24的光物理以及電化學性質受到了分子骨架、取代基以及-共軛系統等影響。相較於雙取代衍生物24a及24b,結構扭曲程度較小的24c之吸收和放射光譜中皆有紅位移的現象,最大吸收及放射波長分別為580和670奈米;由電化學分析方法所測得24c的最高佔據分子軌域與最低未佔據分子軌域之能隙 (HOMOLUMO energy gap)約為1.79電子伏特。於此化合物系列中,以雙自由基分子24c有最大的吸收截面積 (4323 GM at 530 nm)。
9,18-二芳香基四苯并[a,de,j,mn]稠四苯(25, 9,18-diaryltetrabenzo[a,de,j,mn]naphthacene)為24的結構異構物,根據理論計算結果,25具有比24更高的雙自由基性質。化合物25的合成方法中,關鍵步驟為使用三氟化硼進行6,12-二芳香基䓛 (6,12-diarylchrysene)的分子內夫李德爾-夸夫特烷化反應 (Friedel-Crafts alkylation)。目標產物25由二氫取代前趨物46在2,3-二氯-5,6-二氰-1,4-苯醌或是第三丁醇鉀/二甲基甲醯胺條件下進行脫氫反應(oxidative dehydrogenation)而得。由理論計算結果顯示,25為一平面分子。其雙自由基性質的探討,使用變溫核磁共振氫光譜、電子順磁共振光譜儀、超導量子干涉震動磁量儀等實驗方法,並配合理論計算,確認25為一具有單態雙自由基特徵的分子。25b之室溫電子順磁共振光譜呈現一組寬廣的訊號。以超導量子干涉震動磁量儀所測得之變溫磁化率,配合使用Bleaney–Bowers 方程式數據擬合,可得出25b的單重態至三重態的能隙(ES-T)為2.00千卡/莫耳。由於較小的單重態至三重態的能隙,熱激發形成的三重態物種(triplet species)造成了室溫下所測得25b的核磁共振氫光譜可以觀察到譜線加寬的現象。25的-共軛系統及雙自由基性質為影響光物理及電化學性質的重要因素。25的最大吸收波長落在710奈米,以及一組位於近紅外光區域(870奈米)的微弱吸收;以電化學分析方法所得25之最高佔據分子軌域與最低未佔據分子軌域之能隙為1.451.52電子伏特,較雙自由基分子24c來的更小(1.79電子伏特)。
化合物26 (dinaphthozethrene)及27 (diindenozethrene)亦為18的-共軛衍生物,製備上述化合物以了解18相關衍生物的性質。在2,3-二氯-5,6-二氰-1,4-苯醌及路易士酸存在下,7,14-雙苯基取代二苯并[de,mn]稠四苯(18bd)進行氧化性環化反應而得26。7,14-雙(2-氯苯)二苯并[de,mn]稠四苯(18e)於鈀金屬催化下,進行分子內環化生成27。值得注意的是,27為富勒烯C68、C76和C78分子的結構片段。依據X光單晶繞射結果,兩者皆為非平面分子。在晶體排列中,26是以二苯并[g,p]䓛(dibenzo[g,p]chrysene)片段進行-堆疊,兩相鄰分子間最短距離約為3.67埃。由27的晶體堆疊可觀察到分子間沿一維柱狀方向排列,並具有完美的-堆疊,層間距離為3.924埃。由實驗方法和理論計算結果確認兩者皆為閉殼層分子。雖然26和27擁有相等數目的-電子,兩者的性質卻是截然不同的,並以理論計算探討影響因素。兩者以電化學方法測得之最高佔據分子軌域與最低未佔據分子軌域之能隙分別為2.16及1.58電子伏特,其中27的能隙和C76及C78等富勒烯之能隙相當接近。由於27具有較小的能隙和完美的分子堆疊等特性,未來可望應用於有機場效電晶體或有機太陽能電池中。
根據理論計算的結果,化合物28具有較24c及25更高的雙自由基性質。以化合物68或69為起始物,利用自由基反應或是金屬催化等合成方法嘗試製備28,以進行相關性質的研究。在金屬催化條件下,69無法進行分子內環合反應得到二氫衍生物65;65可由68在氫氧化鉀為試劑的反應條件中生成。65再被2,3-二氯-5,6-二氰-1,4-苯醌氧化而得雙酮化合物80,然而,雙酮化合物80對於有機溶劑的低溶解度阻礙了進一步的衍生化。
最後,將嘗試合成結構中分別含有七員環及八員環之化合物29和31,上述化合物為28的非平面衍生物。在鈀金屬催化條件中,化合物89可由86進行7-exo-dig的環化步驟而得。利用相同的反應條件可成功獲得94及102,然而最終產物95a無法由二氫衍生物94進行氧化性脫氫成功獲得;使用二醇化合物103進行還原性脫羥反應亦無法生成目標產物95b。八員環衍生物108的合成策略是以雙苯乙炔取代107與2-丁炔進行銠金屬催化之[2+2+2]環加成反應(cycloaddition),此方法優勢在於可同時生成結構中的八員環及苯環。然而,即使是在過量的2-丁炔的條件之下,仍然無法由106成功獲得目標產物105。
The chemistry of several zethrene-based polyarenes was investigated. 5,14-Disubstituted dinaphtho[3,2,1-de:3',2',1'-mn]naphthacenes 24 were synthesized by the nickel-catalyzed cyclodimerization of 9-ethynyl-1-iodoanthracenes (39). Desilylation of 5,14-bis(trimethyl silyl)dibenzozethrene (24b) yielded the parent compound 24c. The substituents in 24 not only caused its structural deplanarity but also significantly influenced its biradical property. The substituted derivatives of 24 and zethrene are closed-shell, whereas their parent compounds have the singlet biradical ground state, as verified by ESR, SQUID and theoretical calculations. The absence of signal broadening in the 1H NMR spectra and the decrease of the signal intensity in the ESR spectra with increasing temperature were presumably attributable to the conformation motion. The singlettriplet energy (ES-T) of parent 24c was determined to be 2.13 and 1.42 kcal mol-1 by data fitting using the Bleaney–Bowers equation and the alternating Heisenberg chain model, respectively. The molecular framework and substituents of 24 were found to remarkably affect its photophysical and electrochemical properties. Less twisted 24c led to red-shifts in both the absorption and emission spectra relative to those of its substituted derivatives. The longest absorption and emission bands of 24c were centered at 580 and 670 nm, respectively. The HOMOLUMO energy gap of 24c was determined to be 1.79 eV. Within this series of compounds, compound 24c was observed to have the largest two-photon absorption cross-section with a value of 4323 GM at 530 nm.
9,18-Diaryltetrabenzo[a,de,j,mn]naphthacene (25), a geometric isomer of 24, was theoretically predicted to exhibit enhanced biradical character. The key step of the synthesis of 25 was the cyclization of 6,12-diarylchrysenes, which was accomplished by intramolecular BF3-mediated Friedel-Crafts alkylation. The desired 25 were obtained by the oxidative dehydrogenation of the dihydro precursors 46 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or tBuOK/DMF. Unlike the twisted 24, 25 adopted the planar molecular skeleton that was predicted by the computational studies. The biradical property of 25 was examined using variable-temperature 1H NMR, ESR, SQUID and theoretical calculations, indicating the singlet biradical character in the ground state. The ESR spectrum of 25b which was measured at room temperature included broad and featureless signals. The significant population of thermally excited triplet species caused line-broadening in the 1H NMR spectra. The small singlettriplet energy gap (ES-T = 2.00 kcal mol-1) was obtained by curve-fitting of the SQUID data using the Bleaney–Bowers equation. The photophysical and electrochemical properties of 25 depended strongly on the -system and biradical character. The longest absorption band of 25 was determined to be centered at 710 nm and was accompanied by a weak absorption band at around 870 nm in the near-infrared region. The series of compounds 25 have smaller electrochemical HOMOLUMO energy gaps (1.451.52 eV) than that of the open-shell 24c (1.79 eV).
To gain more insight into the chemistry of the zethrene-based condensed arenes, dinaphthozethrene (26) and diindenozethrene (27) were synthesized. Compound 26 were prepared from 7,14-di(4-alkylphenyl)zethrenes (18bd) through oxidative cyclodehydrogenation in the presence of DDQ and FeCl3. Diindenozethrene (27), which is a distinctive fragment of unusual fullerenes C68, C76 and C78, was obtained by the palladium-catalyzed intramolecular cyclization of 7,14-di(2-chlorophenyl)zethrene (18e). Structural analysis of 26-Me and 27, based on X-ray crystallography, suggested that both of these structures deviate from planarity. Aggregation of 26-Me formed the effective - overlap between the dibenzo[g,p]chrysene moieties, such that the shortest distance between two adjacent molecules was around 3.67 Å. The molecular packing of 27 exhibited intermolecular - overlaps with a distance of 3.924 Å. Unlike the open shell 24c and 25, 26 and 27 were determined to have closed-shell ground states. Although 26 and 27 are -isoelectronic, their photophysical and electrochemical properties differ significantly. The electrochemical HOMOLUMO energy gaps of 26 and 27 were determined to be 2.16 and 1.58 eV, respectively. Notably, the small energy gap of 27 is comparable to those of C76 and C78. The difference between the physical properties of 26 and 27 can be rationalized using time-dependent density functional theory. Owing to its low HOMOLUMO energy gap and effective intermolecular - aggregation, 27 has potential applications in the organic field-effect transistor (OFET) and as a fullerene-like electron acceptor in solar cells.
Attempts were made to prepare dibenzoheptazethrene 28 with an extended -system to examine its biradical property because it was theoretically estimated to exhibit stronger biradical character than those of 24c and 25. Compound 28 was planned to be synthesized by radical-mediated or metal-catalyzed cyclization of the 1,4-phenylenebis(methylene)-bridged bisanthracenones 68 or bisanthracenes 69. However, metal-catalyzed cyclization of 69 did not give the desired dihydrodibenzoheptazethrene 65. The KOH-mediated cyclization of 1,1'-dichloro-9,9'-[1,4-phenylenebis(methylene)]- bisanthracene (69a) produced the target 65, which underwent DDQ-mediated oxidation to yield dione 80. Further functionalization of 80 was presumably inaccessible due to its poor solubility in common organic solvents.
The backbones of compounds 29 and 31, the nonplanar derivatives of dibenzoheptazethrene, contain seven- and eight-membered rings, respectively. Attempts were made to investigate their chemistry and physical properties. A test reaction indicated that compound 89 was successfully formed by the palladium-catalyzed 7-exo-dig ring closure of 1,1'-diphenylethynyl-9,9'-[2,5-dibromo-1,4-phenylenebis(methylene)]- bisanthracene (86). Although 94 and 102 were obtained using the same synthetic protocol, the preparations of the final products, heptazethrene derivatives 95a and 95b, were impeded by the unsuccessful oxidative dehydrogenation of dihydro 94 and the reductive dehydroxylation of diol 103, respectively. The rhodium-catalyzed [2+2+2] cycloaddition of the bis(phenylethynyl)-substituted anthracenone derivative 107 with an alkyne was found to be an efficient method for synthesizing cycloadduct 108, enabling an eight-membered ring and a benzene moiety to be obtained in a single step. Unfortunately, the treatment of tetrakis(phenylethynyl)-substituted bisanthracenone 106 with excess 2-butyne under this reaction condition gave the mono-cyclized compound 110 as the major product.
1.(a) Kaiser, R. Angew. Chem. Int. Ed. Engl. 1968, 7, 345. (b) Faraday, M. Phil. Trans. R. Soc. 1825, 115, 440.
2.Loschmidt, J. Chemische Studien: Constitutions-Formeln der Organischen Chemie in Graphischer Darstellung: Das Mariott'sche Gesetz. Wein: Gerold, 1861.
3.(a) Kekulé, A. Bull. Soc. Chim. Fr. 1865, 3, 98. (b) Kekulé, A. Ann. Chem. Pharm. 1866, 137, 129; (c) Kekulé, A. Ber. Deutsch. Chem. GES. 2, 1869, 362.
4.(a) Bjørseth, A.; Ramdahl, T. Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker: New York, 1985. (b) Hopf, H. Classics in Hydrocarbon Chemistry. Wiley-VCH: Weinheim, 2000.
5.Clar, E. The Aromatic Sextet, Wiley-VCH: London, 1972.
6.(a) Frank, N. L.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1995, 117, 2102. (b) Burgi, H.-B.; Baldridge, K. K.; Hardcastle, K.; Frank, N. L.; Gantzel, P.; Siegel, J. S.; Ziller, J. Angew. Chem. Int. Ed. Engl. 1995, 34, 1454.
7.Krygowski, T. M.; Ejsmont, K.; Stepień, B. T.; Cyrański, M.; Poater, J.; Solà, M. J. Org. Chem. 2004, 69, 6634.
8.Abe, M. Chem. Rev. 2013, 113, 7011.
9.(a) Borden, W. T.; Iwamura, H.; Berson, J. A. Acc. Chem. Res. 1994, 27, 109. (b) Karafiloglou, P. J. Chem. Educ. 1989, 66, 816. (c) Zeng, Z.; Shi, X.; Chi, C.; Navarrete, J. T. L.; Casado, J.; Wu, J. Chem. Soc. Rev. 2015, 44, 6578.
10.(a) Döhnert, D.; Koutecký, J. J. Am. Chem. Soc. 1980, 102, 1789. (b) Noodleman, L. J. Chem. Phys. 1981, 74, 5737. (c) Yamaguchi, K.; Kawakami, T.; Takano, Y.; Kitagawa, Y.; Yamashita, Y.; Fujita, H. Int. J. Quantum Chem. 2002, 90, 370. (d) Salem, L.; Rowland, C. Angew. Chem. Int. Ed. Engl. 1972, 11, 92. (e) Bonačić-Koutecký, V.; Koutecký, J.; Michl, J. Angew. Chem. Int. Ed. Engl. 1987, 26, 170.
11.Motta, S. D.; Negri, F.; Fazzi, D.; Castiglioni, C.; Canesi, E. V. J. Phys. Chem. Lett. 2010, 1, 3334.
12.Chikamatsu, M.; Mikami, T.; Chisaka, J.; Yoshida, Y.; Azumi, R.; Yase, K. Appl. Phys. Lett. 2007, 91, 043506
13.Ni, Y.; Lee, S.; Son, M; Aratani, N.; Ishida, M.; Samanta, A.; Yamada, H.; Chang, Y.-T.; Furuta, H.; Kim, D.; Wu, J. Angew. Chem. Int. Ed. 2016, 55, 2815.
14.(a) Minami, T.; Nakano, M. J. Phys. Chem. Lett. 2012, 3, 145. (b) Wilson, M. W. B.; Rao, A.; Clark, J.; Kumar, R. S. S.; Brida, D.; Cerullo, G.; Friend, R. H. J. Am. Chem. Soc. 2011, 133, 11830. (c) Zimmerman, P. M.; Bell, F.; Casanova, D.; Head-Gordon, M. J. Am. Chem. Soc. 2011, 133, 19944. (d) Paci, I.; Johnson, J. C.; Chen, X.; Rana, G.; Popović, D.; David, D. E.; Nozik, A. J.; Ratner, M. A.; Michl, J. J. Am. Chem. Soc. 2006, 128, 16546.
15.(a) Nakano, M.; Kishi, R.; Nitta, T.; Kubo, T.; Nakasuji, K.; Kamada, K.; Ohta, K.; Champagne, B.; Botek, E.; Yamaguchi, K. J. Phys. Chem. A 2005, 109, 885. (b) Kamada, K.; Ohta, K.; Kubo, T.; Shimizu, A.; Morita, Y.; Nakasuji, K.; Kishi, R.; Ohta, S.; Furukawa, S.; Takahashi, H.; Nakano, M. Angew. Chem. Int. Ed. 2007, 46, 3544.
16.(a) Bendikov, M.; Duong, H. M.; Starkey, K.; Houk, K. N.; Carter, E. A.; Wudl, F. J. Am. Chem. Soc. 2004, 126, 7416. (b) Jiang, D.-e.; Dai, S. J. Phys. Chem. A 2008, 112, 332.
17.(a) Mondal, R.; Adhikari, R. M.; Shah, B. K.; Neckers, D. C. Org. Lett. 2007, 9, 2505. (b) Mondal, R.; Shah, B. K.; Neckers, D. C. J. Am. Chem. Soc. 2006, 128, 9612. (c) Tönshoff, C.; Bettinger, H. F. Angew. Chem. Int. Ed. 2010, 49, 4125.
18.Purushothaman, B.; Bruzek, M.; Parkin, S. R.; Miller, A.-F.; Anthony, J. E. Angew. Chem. Int. Ed. 2011, 50, 7013.
19.Kaur, I.; Jazdzyk, M.; Stein, N. N.; Prusevich, P.; Miller, G. P. J. Am. Chem. Soc. 2010, 132, 1261.
20.Shimizu, A.; Hirao, Y.; Kubo, T.; Nakano, M.; Botek, E.; Champagne, B. AIP Conf. Proc. 2012, 1504, 399.
21.Jiang, D.-E.; Sumpter, B. G.; Dai, S. J. Chem. Phys. 2007, 127, 124703-1.
22.Konishi, A.; Hirao, Y.; Nakano, M.; Shimizu, A.; Botek, E.; Champagne, B.; Shiomi, D.; Sato, K.; Takui, T.; Matsumoto, K.; Kurata, H.; Kubo, T. J. Am. Chem. Soc. 2010, 132, 11021.
23.Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kishi, R.; Shigeta, Y.; Nakano, M.; Tokunaga, K.; Kamada, K.; Kubo, T. J. Am. Chem. Soc. 2013, 135, 1430.
24.Hirao, Y.; Konishi, A.; Matsumoto, K.; Kurata, H.; Kubo, T. AIP Conf. Proc. 2012, 1504, 863.
25.Kubo, T.; Shimizu, A.; Sakamoto, M.; Uruichi, M.; Yakushi, K.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Morita, Y.; Nakasuji, K. Angew. Chem. Int. Ed. 2005, 44, 6564.
26.Ohashi, K.; Kubo, T.; Masui, T.; Yamamoto, K.; Nakasuji, K.; Takui, T.; Kai, Y.; Murata, I. J. Am. Chem. Soc. 1998, 120, 2018.
27.Shimizu, A.; Uruichi, M.; Yakushi, K.; Matsuzaki, H.; Okamoto, H.; Nakano, M.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo, T. Angew. Chem. Int. Ed. 2009, 48, 5482.
28.Kamada, K.; Ohta, K.; Kubo, T.; Shimizu, A.; Morita, Y.; Nakasuji, K.; Kishi, R.; Ohta, S.; Furukawa, S.; Takahashi, H.; Nakano, M. Angew. Chem. Int. Ed. 2007, 46, 3544.
29.Chikamatsu, M.; Mikami, T.; Chisaka, J.; Yoshida, Y.; Azumi, R.; Yase, K. Appl. Phys. Lett. 2007, 91, 043506‐1.
30.Kubo, T.; Sakamoto, M.; Akabane, M.; Fujiwara, Y.; Yamamoto, K.; Akita, M.; Inoue, K.; Takui, T.; Nakasuji, K. Angew. Chem. Int. Ed. 2004, 43, 6474.
31.Kubo, T.; Yamamoto, K.; Nakasuji, K.; Takui, T. Tetrahedron Lett. 2001, 42, 7997.
32.(a) Hibi, D.; Kitabayashi, K.; Shimizu, A.; Umeda, R.; Tobe, Y. Org. Biomol. Chem. 2013, 11, 8256. (b) Marković, S.; Radenković, S.; Marković, Z.; Gutman, I. Russ. J. Phys. Chem. A 2011, 85, 2368.
33.Wu, T.-C.; Chen, C.-H.; Hibi, D.; Shimizu, A.; Tobe, Y.; Wu, Y.-T. Angew. Chem. Int. Ed. 2010, 49, 7059.
34.Clar, E.; Lang, K.; Schulz-Kiesow, H. Chem. Ber. 1955, 88, 1520.
35.(a) Staab, H. A.; Nissen, A.; Ipaktschi, J. Angew. Chem. Int. Ed. Engl. 1968, 7, 226. (b) Mitchell, R. H.; Sondheimer, F. Tetrahedron 1970, 26, 2141. (c) Staab, H. A.; Ipaktschi, J.; Nissen, A. Chem. Ber. 1971, 104, 1182. (d) Umeda, R.; Hibi, D.; Miki, K.; Tobe, Y. Org. Lett. 2009, 11, 4104. (e) Sun, Z.; Huang, K.-W.; Wu, J. Org. Lett. 2010, 12, 4690. (f) Umeda, R.; Hibi, D.; Miki, K.; Tobe, Y. Pure Appl. Chem. 2010, 82, 871.
36.(a) Mitchell, R. H.; Sondheimer, F. J. Am. Chem. Soc. 1968, 90, 530. (b) Meinwald, J.; Young, J. W. J. Am. Chem. Soc. 1971, 93, 725.
37.Shan, L.; Liang, Z.; Xu, X.; Tang, Q.; Miao, Q. Chem. Sci. 2013, 4, 3294.
38.Sun, Z.; Huang, K.-W.; Wu, J. J. Am. Chem. Soc. 2011, 133, 11896.
39.Li, Y.; Heng, W.-K.; Lee, B. S.; Aratani, N.; Zafra, J. L.; Bao, N.; Lee, R.; Sung, Y. M.; Sun, Z.; Huang, K.-W.; Webster, R. D.; Navarrete, J. T. L.; Kim, D.; Osuka, A.; Casado, J.; Ding, J.; Wu, J. J. Am. Chem. Soc. 2012, 134, 14913.
40.Sun, Z.; Lee, S.; Park, K. H.; Zhu, X.; Zhang, W.; Zheng, B.; Hu, P.; Zeng, Z.; Das, S.; Li, Y.; Chi, C.; Li, R.-W.; Huang, K.-W.; Ding, J.; Kim, D.; Wu, J. J. Am. Chem. Soc. 2013, 135, 18229.
41.Fang, H.-Y. Master thesis, 2013, National Cheng Kung University, Taiwan.
42.Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392.
43.Bleaney, B.; Bowers, K. D. Proc. R. Soc. London Ser. A 1952, 214, 451.
44.Johnston, D. C.; Kremer, R. K.; Troyer, M.; Wang, X.; Klumper, A.; Bud'ko, S. L.; Panchula, A. F.; Canfield, P. C. Phys. Rev. B 2000, 61, 9558.
45.(a) Øpstad, C. L.; Melø, T.-B.; Sliwka, H.-R.; Partali V. Tetrahedron 2009, 65, 7616. (b) Drapeau, M. P.; Fabre, I.; Grimaud, L.; Ciofini, I.; Ollevier, T.; Taillefer, M. Angew. Chem. Int. Ed. 2015, 54, 10587. (c) Chen, Y.-y.; Chen, Z.-y.; Zhang, N.-n.; Chen, J.-h.; Zhang, X.-j.; Yan, M. Eur. J. Org. Chem. 2016, 599.
46.Yadav, P.; Das, S.; Phan, H.; Herng, T. S.; Ding, Jun; Wu, J. Org. Lett. 2016, 18, 2886.
47.(a) Chase, D. T.; Rose, B. D.; McClintock, S. P.; Zakharov, L. N.; Haley, M. M. Angew. Chem. Int. Ed. 2011, 50, 1127. (b) Shimizu, A.; Tobe, Y. Angew. Chem. Int. Ed. 2011, 50, 6906. (c) Shimizu, A.; Kishi, R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Hisaki, I.; Miyata, M.; Tobe, Y. Angew. Chem. Int. Ed. 2013, 52, 6076. (d) Fix, A. G.; Deal, P. E.; Vonnegut, C. L.; Rose, B. D.; Zakharov, L. N.; Haley, M. M. Org. Lett. 2013, 15, 1362. (e) Miyoshi, H.; Nobusue, S.; Shimizu, A.; Hisaki, I.; Miyatab, M.; Tobe, Y. Chem. Sci. 2014, 5, 163.
48.Rudebusch, G. E.; Zafra, J. L.; Jorner, K.; Fukuda, K.; Marshall, J. L.; Arrechea-Marcos, I.; Espejo, G. L.; Ortiz, R. P.; Gómez-García, C. J.; Zakharov, L. N.; Nakano, M.; Ottosson, H.; Casado, J.; Haley, M. M. Nat. Chem. 2016, 8, 753.
49.Maekawa, T.; Ueno, H.; Segawa, Y; Haley, M. M; Itami, K. Chem. Sci., 2016, 7, 650.
50.(a) Mattay, J.; Griesbeck, A. Photochemical Key Steps in Organic Synthesis; Wiley-VCH: Weinheim, 1994. (b) Mallory, F. B.; Mallory, C. W. Org. React. 1984, 30, 1.
51.Zhai, L.; Shukla, R.; Rathore, R. Org. Lett. 2009, 11, 3474.
52.(a) Zólyomi, V.; Peterlik, H.; Bernardi, J.; Bokor, M.; László, I.; Koltai, J.; Kurti, J.; Knupfer, M.; Kuzmany, H.; Pichler, T.; Simon, F. J. Phys. Chem. C 2014, 118, 30260. (b) Ioffe, I. N.; Goryunkov, A. A.; Tamm, N. B.; Sidorov, L. N.; Kemnitz, E.; Troyanov, S. I. Angew. Chem. Int. Ed. 2009, 48, 5904. (c) Kemnitz, E.; Troyanov, S. I. Mendeleev Commun. 2010, 20, 74.
53.(a) Dewar, M. J. S.; Schmeising, H. N. Tetrahedron 1959, 5, 166. The single bond in perylene was determined to be 1.474 Å. (b) Ranganathan, A.; Kulkarni, G. U. Proc. Indian Acad. Sci., Chem. Sci. 2003, 115, 637.
54.Baughman, R. H.; Kohler, B. E.; Levy, I. J.; Spangler, C. Synth. Met. 1985, 11, 37
55.(a) Brunetti, F. G.; Gong, X.; Tong, M.; Heeger, A. J.; Wudl, F. Angew. Chem., Int. Ed. 2010, 49, 532. (b) Iyoda, M.; Otani, H.; Oda, M. Angew. Chem., Int. Ed. Engl. 1988, 27, 1080.
56.Yang, Y.; Arias, F.; Echegoyen, L.; Chibante, L. P. F.; Flanagan, S.; Robertson, A.; Wilson, L. J. J. Am. Chem. Soc. 1995, 117, 7801.
57.Dang, H.; Levitus, M.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2002, 124, 136.
58.Wood, J. D.; Jellison, J. L.; Finke, A. D.; Wang, L.; Plunkett, K. N. J. Am. Chem. Soc. 2012, 134, 15783.
59.(a) Blood, C. T.; Linstea, R. P. J. Chem. Soc. 1952, 2263. (b) Kawase, T.; Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo, T. Chem. Eur. J. 2009, 15, 2653. (c) Wu, T.-C.; Tai, C.-C.; Tiao, H.-C.; Chang, Y.-T.; Liu, C.-C.; Li, C.-H.; Huang, C.-H.; Kuo, M.-Y.; Wu, Y.-T. Chem. Eur. J. 2011, 17, 7220.
60.Jiang, X.; Li, Z.; Cao, D. Huaxue Xuebao 2010, 68, 2069.
61.Gao, C.; Cao ,D.; Xu, S.; Meier, H. J. Org. Chem. 2006, 71, 3071.
62.(a) Carbonnelle, A.-C.; Zhu, J. Org. Lett. 2000, 2, 3477. (b) Miyashita, K.; Sakai, T.; Imanishi, T. Org. Lett. 2003, 5, 2683.
63.Kayahara, E.; Patel, V. K.; Yamago S. J. Am. Chem. Soc. 2014, 136, 2284.
64.Kabir, S. M. H.; Hasegawa, M.; Kuwatani, Y.; Yoshida, M.; Matsuyama, H.; Iyoda, M. J. Chem. Soc. Perkin Trans. 1 2001, 159.
65.Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219.
66.(a) Clar, E.; Kelly, W.; Wright, J. W. J. Chem. Soc. 1954, 1108. (b) Sasaki, M.; Fujimaki, Y.; Uchida, A.; Ohshima, S.; Takekawa, M.; Sakamoto, Y. Polycycl. Aromat. Compd. 2004, 24, 271.
67.(a) Roman, D. S.; Takahashi, Y.; Charette, A. B. Org. Lett. 2011, 13, 3242. (b) Shirakawa, E.; Itoh, K.-i.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537. (c) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.; Lu, X.-Y.; Huang, K.; Zheng, S.-F.; Li, B.-J.; Shi, Z.-J. Nat. Chem. 2010, 2, 1044.
68.(a) Ravat, P.; Šolomek, T.; Rickhaus, M.; Häussinger, D.; Neuburger, M.; Baumgarten, M.; Juríček, M. Angew. Chem. Int. Ed. 2016, 55, 1183. (b) Ravat, P.; Šolomek, T.; Ribar, P.; Juríček, M. Synlett 2016, 27, 1613.
69.Coulson, C. A.; Daudel, R.; Robertson, J. M. Proc. R. Soc. Lond. A Math. Phys. Sci. 1951, 207, 306.
70.Lee, W. Y.; Sim, W.; Choi, K. D. J. Chem. Soc. Perkin Trans. 1 1992, 881.
71.Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532.
72.(a) Seidel, N.; Hahn, T.; Liebing, S.; Seichter, W.; Kortus, J.; Weber, E. New J. Chem. 2013, 37, 601. (b) Yamamoto, G.; Oki, M. Bull. Chem. Soc. Jpn. 1983, 56, 2082.
73.Some, S.; Dutta, B.; Ray, J. K. Tetrahedron Lett. 2006, 47, 1221.
74.Goromaru, H.; Ishibashi, K.; Okamoto, T.; Endo, K.; Otani, K.; Minakami, J. Jpn. Kokai Tokkyo Koho 2011195462.
75.Barluenga, J.; Trincado, M.; Rubio, E.; González, J. M. Angew. Chem. Int. Ed. 2006, 45, 3140.
76.Abe, S. PCT Int. Appl. 2014115528.
77.Kasturi, T.R.; Mandal, A.B.; Reddy, P. A.; Prasad, K.B.G.; Rajasekhar, B. Tetrahedron 1991, 47, 5245.
78.Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2012, 51, 5714.
79.Amaya, T.; Hifumi, M.; Okada, M.; Shimizu, Y.; Moriuchi, T.; Segawa, K.; Ando, Y.; Hirao, T. J. Org. Chem. 2011, 76, 8049.
80.Lovell, J. M.; Joule, J. A. Synth. Commun. 1997, 27, 1209.
81.Eldo, J.; Arunkumar, E.; Ajayaghosh, A. Tetrahedron Lett. 2000, 41, 6241.
82.Bonifacio, M. C.; Robertson, C. R.; Jung, J.-Y.; King, B. T. J. Org. Chem. 2005, 70, 8522.
83.Cao, D.; Schollmeyer, D.; Meier, H. Eur. J. Org. Chem. 1999, 791.
84.Makarov, N. S.; Drobizhev, M.; Rebane, A. Opt. Express 2008, 16, 4029.