| 研究生: |
賴諺澂 Lai, Yen-Cheng |
|---|---|
| 論文名稱: |
穿透式量測鈉原子分子之電磁誘發透明 Detecting Electromagnetically Induced Transparency in Sodium Dimer by Measuring the Transparent Signals |
| 指導教授: |
蔡錦俊
Tsai, Chin-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鈉原子分子 、電磁誘發透明 、量子干涉 |
| 外文關鍵詞: | Na2, LIF, OODR, EIT, Quantum Interference |
| 相關次數: | 點閱:154 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用加熱爐管加熱鈉金屬至350°C產生足夠的鈉蒸氣於爐管中,並維持內部氣壓在4-6torr,使原子互相撞擊產生實驗所需的Na2,在實驗中使用了兩種不同的偵測方法來驗證我們的三能階系統。相較於先前的研究,我們此次分別使用兩台超短線寬雷射(Coherent 699 Ring-Dye Laser & Coherent 899 Ti:Sapphire Laser)作為激發光源,建立了一階梯式三能階系統,其能階態分別是基態X1Σg+、中間態A1Σu+和激發態41Σg+。
首先我們使用染料雷射做為泵浦雷射,調整至共振頻率使鈉分子從X1Σg+躍遷至A1Σu+,並配合所選頻率調整鈦藍寶石雷射,將鈉分子再次從A1Σu+躍遷至41Σg+。接著我們利用單光儀量測電子回到中間態與基態的螢光,藉由所得到的雷射激發光譜的譜線進行分析,並與實驗模擬所得的波長和強度與實際結果進行比較,驗證雷射頻率是否與我們預期的躍遷能階相同。另一方面,利用一組帶有濾光片的光電倍增管,量測經由內轉換從高能階單重態碰撞至高能階三重態最後返回基態的螢光,確認三能階系統的建立與否。
經由上述完整的實驗分析結果,我們可以清楚標定出多組三能階系統X1Σg+ (2,37) → A1Σu+(21,38) → 41Σg+ (11,37)、X1Σg+ (2,11) → A1Σu+(21,12) → 41Σg+ (12,13)和X1Σg+ (2,21) → A1Σu+(9,20) → 41Σg+ (3,19)等,同時我們也比較了因不同躍遷途徑對應不同的法蘭克-康登常數對於OODR訊號的影響,當法蘭克-康登常數較大時,我們能得到的OODR訊號也會較強,與理論預期相符合。而經由以上多組數據的研究,我們利用此三能階系統,架設一量子干涉實驗系統,量測雙原子鈉分子系統中的電磁誘發透明現象。我們將染料雷射作為探測光並將光強衰減至奈瓦等級,藉由掃描鈦藍寶石雷射頻率的同時,觀察染料雷射在穿透氣態鈉原子分子的光強變化,並成功觀測到電磁誘發透明的現象。
We first built a five arm heat pipe to heat the sodium metal up to 350°C and keep the system at low pressure around 4-6 torr. We tune the Laser frequency to excite the sodium dimer from the ground state (X1Σg+) to the intermediate state (A1Σu+). By collecting the Laser induced fluorescence (LIF), we can label the exact rotational and vibrational quantum number for the intermediate level. By using another laser, which is counter-propagate with the first laser to excite the molecules from intermediate state (A1Σu+) to upper state (41Σg+), we can also label the quantum number for the upper level by the same method mentioned above. Furthermore, we use optical-optical double resonance (OODR) to examine our transition results, which also matched with our conclusions. By establishing the three-level system, now we can measure the quantum interference in sodium dimer. In our following experiment, we scanned the frequency of Ti:Sapphire and measured the transparent power of dye laser. We successfully observed the electromagnetically induced transparency (EIT) signals in our system.
[1] For a review of this subject, see E. Arimondo, in Progress in Optics XXXV, edited by E. Wolf (North-Holland, Amsterdam, 1996).
[2] A. Imamoglu and S. E. Harris, Lasers Without Inversion: Interference of Dressed Lifetime-Broadened States, Opt. Lett. 14, 1344 (1989).
[3]K. J. Boller, A. Imamoglu, and S. E. Harris, Observation of Electromagnetically Induced Transparency, Phys. Rev. Lett. 66, 2593 (1991).
[4] S.H. Autler and C. H. Townes, Stark effect in rapidly varying fields, Phys. Rev. 100, 703 (1955).
[5] L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, Autler-Townes effect in a strong driven electromagnetically induced transparency resonance, Phys. Rev. A 72, 053801 (2005).
[6] P. Kusch and M. M. Hessel, An analysis of B^1 Π_u-X^1 Σ_g^+ band system of 〖Na〗_2, J. Chem. Phys. 68, 2591 (1978).
[7] K. K. Verma, J. T. Bahns, A.R. Rajaei-Rizi, William C. Stwalley, and W. T. Zemke, First observation of bound-continuum transitions in the laser-induced A^1 Σ_u^+-X^1 Σ_g^+ fluorescence of 〖Na〗_2, J. Chem. Phys. 78, 3599 (1983).
[8] R. F. Barrow, J. Verges, C. Effantin, K. Hussein, and J. D’incan, Long-range potentials for the X^1 Σ_g^+ And 〖(1)〗^1 Σ_g^+ states and the dissociation energy of 〖Na〗_2, Chem. Phys. Lett. 104, 179 (1984).
[9] 葉俊彥,雙原子鈉分子 B^1 Π_u→X^1 Σ_g^+ 電子態雷射誘導螢光光譜,國立成功大學物理研究所碩士論文 (2014).
[10] P. Kusch and M. M. Hessel, J. Chem. Phys. 63, 4087 (1975).
[11] M. E. Kaminsky, New spectroscopy constants and RKR potential for the A^1 Σ_u^+ state of 〖Na〗_2, J. Chem. Phys. 66, 4951 (1977).
[12] G. Gerber and R. Moller, Optical-Optical Double Resonance Spectroscopy of the High Vibrational levels of the 〖Na〗_2 A^1 Σ_u^+ state in a molecular beam, Chem. Phys. Lett. 113.6 (1985).
[13] N. W. Carson, A. J. Taylor, K. M. Jones, and A. L. Schawlow, Two-step polarization-labeling spectroscopy of excited states of 〖Na〗_2, Phys. Rev. A 24, 822 (1981).
[14] C. Effantin, J. d’Incan, A. J. Ross, R. P. Barrow, and J. Verges, J. Phys. B: At. Mol. Opt. Phys. 15, 1515 (1984)
[15] Thou-Jen Whang, He Wang, A. Marjatta Lyyra, Li Li, and William C. Stwalley, Optical-Optical Double Resonance Spectroscopy of the 〖Na〗_2 2^1 Π_g State, J. Mol. Spectrosc. 145, 112-122 (1991)
[16] C. C. Tsai, J. T. Bahns, and W. C. Stwalley, Optical-Optical Double Resonance Spectroscopy of the 2^1 Π_g State of 〖Na〗_2 Using an Ultrasensitive Ionization Detector, J. Mol. Spectrosc. 167, 437 (1994).
[17] 吳惠雯,雙原子鈉分子 2^1 Δ_g電子態與 3^1 Π_g電子態之雙光子共振光譜,國立成功大學化學研究所碩士論文 (2003).
[18] 陳偉翔,雷射光譜在雙原子鈉分子研究上的應用,國立成功大學物理研究所碩士論文 (2006).
[19] 王鵬傑,雙原子鈉分子之參光子共振光譜,國立成功大學物理研究所碩士論文 (2015).
[20] 劉力仁,雙原子鈉分子中的電磁誘發透明,國立成功大學物理研究所碩士論文 (2016).
[21] Li Li and R. W. Field, Direct observation of high-lying 3.PI.g states of the sodium molecule by optical-optical double resonance , J. Phys. Chem. 87, 3020 (1983).
[22] Li Li and R. W. Field, CW Optical-Optical Double Resonance Studies of the 2^3 Π_g,3^3 Π_g,4^3 Σ_g^+ and 1^3 Δ_g Rydberg States of 〖Na〗_2, J. Mol. Spectrosc. 117, 245 (1986).
[23] T. J. Whang, C. C. Tsai, A. M. Lyyra, Li Li, and W. C. Stwalley, Spectroscopy Study of the 〖Na〗_2 2^3 Σ_g^+ State by cw Perturbation-Facilitated Optical-Optical Double Resonance Spectroscopy , J. Mol. Spectrosc. 160, 411 (1993).
[24] N. N. Rubtsova, Electromagnetically Induced Transparency in a Molecular gas, Opt. Spectrosc. 91, 53 (2001).
[25] A. M. Lyyra et al., Measurement of Transition Dipole Moments in Lithium Dimers Using Electromagnetically Induced Transparency, Phys. Rev. Lett. 88, 173003 (2002).
[26] Jianbing Qi and A. M. Lyyra, Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system, Phys. Rev. A 73, 043810 (2006).
[27] A. Lazoudis, E. H. Ahmed, L. Li, T. Kirova, P. Qi, A. Hannson, J. Magnes, and A. M. Lyyra, Experimental observation of the dependence of Autler-Townes splitting on the probe and coupling laser wave-number ratio in Doppler-broadened open molecular systems, Phys. Rev. A 78, 043405 (2008).
[28] K. Ichimura, K. Yamamoto, and N. Gemma, Evidence for Electromagnetically induced transparency in a solid medium, Phys. Rev. A 58, 4116 (1998).
[29] G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules, Robert E. Krieger Publishing Co., Malabar, Florida (1989).
[30] M. Born and R. Oppenheimer, On the Quantum Theory of Molecules, Annalen der Physik (in German) 389 (20): 457–484.
[31] J. L. Dunham, The Energy Levels of a Rotating Vibrator, Phys. Rev. 41, 721 (1932).
[32] F. Hund, Allgemeine Quantenmechanik des Atom und Molekelbaues, Quantentheorie, vol. 2, pp. 561-694 (1993).
[33] 何宗勳,銫原子中電磁誘發透明的躍遷特性,國立成功大學物理研究所碩士論文 (2013).
[34] 陳宏任,磁光阱中低溫銫原子的電磁誘發透明,國立成功大學物理研究所碩士論文 (2013).
[35] 陳維甫,利用電磁誘發透明測量銫原子雷德堡態的精確頻率,國立成功大學光電科學與工程研究所碩士論文 (2013).
[36] 蘇靖淵,光泵浦效應對銫原子階梯式電磁誘發透明的影響,國立成功大學物理研究所碩士論文 (2014).
[37] 謝孟晃,熱效應對於銫原子電磁誘發透明之影響,國立成功大學物理研究所碩士論文 (2014).
[38] 阮氏妙賢,利用電磁誘發透明探討銣原子的超精細結構,國立成功大學物理研究所碩士論文 (2014).
[39] 呂慧雯,溫度對階梯式及V型雙光子電磁誘發透明譜線之影響,國立成功大學物理研究所碩士論文 (2015).
[40] 陳語涵,利用電磁誘發透明及碘分子超精細光譜做銫原子能態的精密頻率量測,國立成功大學物理研究所碩士論文 (2015).
[41] S. E. Harris, Refractive-index control with strong fields, Opt. Lett. 19, 2018-2020 (1994).
[42] A. S. King, An electric furnace for spectroscopic investigations, with results for the spectra of titanium and vanadium, Astrophys. J. 28, 300 (1908).
[43] C. R. Vidal and J. Cooper, Heat‐Pipe Oven: A New, Well‐Defined Metal Vapor Device for Spectroscopic Measurements, J. Appl. Phys. 40, 3370 (1969).
[44] C. R. Vidal and F. B. Haller, Heat Pipe Oven Applications. I. Isothermal Heater of Well Defined Temperature. II. Production of Metal Vapor‐Gas Mixtures, Rev. Sci. Instr. 42, 1779 (1971).
[45] C. R. Vidal and M. M. Hessel, Heat‐Pipe Oven for Homogeneous Mixtures of Saturated and Unsaturated Vapors; Application to NaLi, J. Appl. Phys. 43, 2776 (1972).
[46] J. T. Bahns, Ph.D. dissertation, The University of Iowa, Iowa (1983).
[47] J. J. Camacho, A. Pardo, and J. M. L. Poyato, A study of the B^1 Π_u→X^1 Σ_g^+ system of (Na)_2, J. Phys. B: At. Mol. Opt. Phys. 38, 1935 (2005).
[48] Chin-Chun Tsai, J. T. Bahns, and William C. Stwalley, First observation of the quasibound levels and tunneling line broadening in the 3^1 Π_g state of 〖Na〗_2 using an ultrasensitive ionization detector, J. Chem. Phys. 99, 10 (1993).
[49] He Wang, Thou-Jen Whang, A. Marjatta Lyyra, Li Li, and William C. Stwalley, Study of the 4^1 Σ_g^+ “shelf” state of (Na)_2 by optical-optical double resonance spectroscopy, J. Chem. Phys. 94, 7 (1991).
[50] Li Li and A. M. Lyyra, Observation of the (3(3d))^3 Σ_g^+ State of 〖Na〗_2, J. Mol. Spectrosc. 155, 184 (1992).
[51] G. Gerber, R. Möller, Optical-optical double-resonance spectroscopy of high vibrational levels of the Na2 A 1Σu+ state in a molecular beam, Chem. Phys. Lett. 113, 6 (1985).
[52] I. JACKOWSKA, Reanalysis of the A 1 Sigma +u state of Na2 by polarization labelling spectroscopy, Mol. Phys. 89, 6 (1996).