| 研究生: |
楊閔丞 Yang, Min-Cheng |
|---|---|
| 論文名稱: |
單軸壓力下少層AA堆疊石墨烯的相變研究 Phase transition of AA-stacking few-layer graphene under the uniaxial pressure |
| 指導教授: |
林明發
Lin, Ming-Fa |
| 共同指導教授: |
吳璧如
Wu, Bi-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 密度泛函理論 、單軸壓力 、少層AA堆疊石墨烯 、相變 |
| 外文關鍵詞: | Density Functional Theory, uniaxial pressure, AA stacked few layered graphene, phase transition |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇文章是以密度泛函理論(DFT)為基礎,利用了投影綴加波方法(PAW)和局部密度近似(LDA)來做計算。研究在單軸超高壓下和在適當的外加能量下材料的原子結構性質和電子結構性質。
我們研究的材料為兩層至六層的AA堆疊石墨烯。我們先藉由不同壓力下平面晶格常數與總能的變化,去分析在各個不同壓力下之最低能量和發生相變點的特性,討論構成這些可能的狀態所需的壓力或熱能的實驗機制與過程,並計算系統總能、能帶、層與層距離、結構鍵結情形、鍵角及鍵長…等物理量。除了在同樣層數的AA堆疊石墨烯比較之外,還會探討是否在層數差異下有不同特性或是存在其規律性。
在本篇論文中可以觀察到材料在單軸壓力下會造成原子結構變化和電子結構變化。當我們再額外的給予能滿足位能障壁所需能量於特定單軸壓力下的偶數層AA堆疊石墨烯時,可以觀察到除了在原子結構上的改變,亦可以看到電子結構上的改變,而在某些特定條件下甚至可以觀察到材料由最初的半金屬性質相變成了半導體性質。
In this thesis, the first-principles method based on the Density Functional Theory (DFT) and the Local Density Approximation (LDA) was used. The Projector Augmented Wave Method (PAW) is employed for describing the electron-ion interaction. The structural properties and electronic structure of the AA stacked few layered graphene were studied under uniaxial pressure. The lateral equilibrium lattice constant under a uniaxial pressure was also investigated to estimate the possible experimental process.
It is found the bonding type of the carbon atoms in the AA stacked graphene was changed from sp2 to sp3 under high uniaxial pressure, whereas the sp3 bonding came back to sp2 when overcome an energy barrier. A new covalent bond was formed under these mechanical deformation and the thermal process. The electronic structure changed dramatically under uniaxial pressure and a thermal relaxation. A semimetal-insulator transition was observed for even layer AA stacked graphene.
1. A. Jayaraman, Rev. Mod. Phys. 55, 65–108, (1983).
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. , Science 306, 666, (2004).
3. Claire Berger,† Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer, J. Phys. Chem. B, 2004, 108 (52), pp 19912–19916.
4. A. K. Geim1 & K. S. Novoselov, Nature Materials 6, 183 – 191, (2007)
5. I. Lobato , and B. Partoens, Phys. Rev. B 83,165429(2011)
6. Sheu, S.-Y.; Lee, I.-P.; Lee, Y. T.; Chang, H.-C. , APJ. 581, L55-L58, (2002).
7. F. P. Bundy, and J. S. Kasper, Chem. Phys. 46, 3437, (1967).
8. K. Iakoubovskii , M.V. Baidakovab, B.H. Woutersc, A. Stesmansa, G.J. Adriaenssensa, A.Ya. Vul, P.J. Grobet, Diamond and Related Materials 9, 861–865, (2000)
9. Y. Lifshitz, X. F. Duan, N. G. Shang, Q. Li, L. Wan, I. Bello & S. T. Lee, Nature 412, 404, (2001)
10. Takehiko Yagi, Wataru Utsumi, Masa-aki Yamakata, Takumi Kikegawa, Osamu Shimomura, Phys. Rev. B 46, 6031–6039, (1992)
11. P. Darrell Ownby, Xi Yang, and Jenq Liu, J Am. Ceram. SOC., 75 [7] 1876-83, (1992)
12. Kaoru J. Takano, Hiroshi Harashima and Masao Wakatsuki, JJAP. 30, L860-L863, (1991)
13. P. L. de Andres, R. Ramírez, and J. A. Vergés, Phys. Rev. B 77, 045403, (2008)
14. P. E. Blöchl, Phys. Rev. B 50, 17953–17979, (1994)
15. M. Born and K. Huang, Dynamical Theory of Crystal Lattices. Oxford University Press, (1954)
16. Chr. Møller and M. S. Plesset, Phys. Rev. 46, 618–622 (1934)
17. L. H. Thomas, Proc. Camb, Phil. Soc., (1927), 23 : pp 542-548
18. Fermi E., Accad. Naz. Lincei, 6(1927)602.
19. 江進福, 物理雙月刊, 23卷5期, (2001年10月)
20. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864–B871 (1964)
21. W. Kohn, L. J. Sham, Phys. Rev. 140, A1133–A1138 (1965)
22. D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 45, 566–569 (1980)
校內:2022-12-31公開