簡易檢索 / 詳目顯示

研究生: 林高鋒
Lin, Gao-feng
論文名稱: 以金屬網格法製造透明導電膜之研究
Fabrication of transparent conductive films using the metal mesh method
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 86
中文關鍵詞: 脈衝電鍍銅鎳合金金屬網格壓印氮化鉻
外文關鍵詞: pulsed electroplating, copper-nickel alloy, metal mesh, imprint, chromium nitride
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用簡易的電鍍系統以脈衝電鍍的方式沉積銅鎳合金於氮化鉻改質圖案化基板上,再藉由奈米壓印的方式,轉移電鍍層到透明化基板上,以製造金屬網格透明導電膜。由於銅鎳合金有抗腐蝕的特性,故作為金屬網格較能避免外在環境的變化而喪失其導電性。分析結果顯示金屬網格的片電阻為21Ω/□,透明度為79%。其結果雖與一般市面販售之金屬網格特性稍差,但優勢為藉由成本較低的電鍍系統進行生產,可大幅降低生產成本,若能在近一步改善,渴望能取代市面販售之透明導電材料。

    In this study, we fabricated copper and nickel alloy metal mesh transparent conductive films by pulsed electroplating and nanoimprint lithography method. Due to the anti-corrosion behavior of copper and nickel alloy, its mesh can endure the attack of environment and avoid the conductivity of mesh deprived. The sheet resistance of our copper and nickel alloy metal mesh films is 21Ω/□, and the transparency is 79% in air baseline. Although the result didn’t defeat the product which also produce metal mesh transparent conductive films, our advantage is much cheaper than other methods. If doing more improvement, this technique may replace the other transparent conductive films product.

    摘要 I 致謝 VI 目錄 VII 圖目錄 X 表目錄 XIV 第一章 序論 1 1.1 前言 1 1.2 動機 3 1.3 理論架構 3 第二章 文獻回顧 5 2.1 金屬網格 5 2.2 電鍍技術簡介 (ELECTRODEPOSITION) 9 2.2.1 電化學沉積過程與機制 10 2.2.2 電鍍系統組成 11 2.2.3 影響電鍍製程的參數 14 2.2.4 合金電鍍 15 2.3 共鍍銅鎳合金 16 2.3.1 銅鎳合金簡介 16 2.3.2 螯合劑 17 2.3.3 檸檬酸鹽銅鎳共鍍溶液 17 2.3.4 鍍浴的穩定度 19 2.4 壓印技術簡介 19 2.4.1 熱壓成形壓印技術 (HOT-EMBOSSING NANOIMPRINT LITHOGRAPHY, HE-NIL) 20 2.4.3 軟微影技術 (SOFT LITHOGRAPHY OR MICRO-CONTACT PRINTING) 25 2.4.4 逆式壓印技術 (REVERSAL IMPRINTING LITHOGRAPHY) 27 第三章 實驗方法與步驟 29 3.1 實驗流程 29 3.2 實驗系統 30 3.2.1 氧電漿表面處理系統 30 3.2.2 熱壓印機 30 3.2.3 UV奈米壓印曝光機 31 3.2.4 真空磁控濺鍍系統 31 3.2.5 感應耦合電漿蝕刻系統 (ICP-RIE) 32 3.2.6 電鍍系統 33 3.3 實驗材料 36 3.3.1 基板材質 36 3.3.2 實驗藥品 36 3.3.3 溶劑以及其他相關藥品 38 3.4 實驗步驟 38 3.4.1 圖案化模具製作 38 3.4.2 用電鍍方式沉積銅/銅鎳合金 39 3.4.3 熱壓式轉印 40 3.4.4 氮化鉻改質模具製作 40 第四章 結果與討論 46 4.1 以電鍍法沉積金屬 46 4.1.1 以直流電源電鍍銅金屬 46 4.1.2 以直流電鍍沉積銅鎳合金 51 4.1.3 以脈衝電鍍沉積銅鎳合金 58 4.1.4 以脈衝電鍍銅鎳合金於圖案化模具 63 4.2 轉印金屬網格 65 4.3 模具表面處理 66 4.3.1 模具表面噴塗脫模劑 67 4.3.2 使用OTS疏水處理改質模具 68 4.3.3 使用AS抗沾黏藥水改質模具 69 4.3.4 氮化鉻模具 71 4.4 使用PVP作為封端劑降低鍍層附著力 76 第五章 結論 81 5.1 總結 81 5.2 未來建議 81

    [1] D. Graham-Rowe, "Electronic paper rewrites the rulebook for displays," Nat Photon, vol. 1, pp. 248-251, 05//print 2007.
    [2] D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, et al., "Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper," Advanced Materials, vol. 21, pp. 3703-3707+3619, 2009.
    [3] K. Yong-Hoon, M. Dae-Gyu, and H. Jeong-In, "Organic TFT array on a paper substrate," IEEE Electron Device Letters, vol. 25, pp. 702-704, 2004.
    [4] P. Andersson, D. Nilsson, P. O. Svensson, M. X. Chen, A. Malmstrom, T. Remonen, et al., "Active matrix displays based on all-organic electrochemical smart pixels printed on paper," Advanced Materials, vol. 14, pp. 1460-+, Oct 16 2002.
    [5] K. H. Ok, J. Kim, S. R. Park, Y. Kim, C. J. Lee, S. J. Hong, et al., "Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes," Sci Rep, vol. 5, p. 9464, 2015.
    [6] B. Scrosati, "Nanomaterials - Paper powers battery breakthrough," Nature Nanotechnology, vol. 2, pp. 598-599, Oct 2007.
    [7] B. Lamprecht, R. Thunauer, M. Ostermann, G. Jakopic, and G. Leising, "Organic photodiodes on newspaper," Physica Status Solidi a-Applications and Materials Science, vol. 202, pp. R50-R52, Apr 2005.
    [8] S. M. Lyth and S. R. P. Silva, "Field emission from multiwall carbon nanotubes on paper substrates," Applied Physics Letters, vol. 90, Apr 23 2007.
    [9] K. Ghule, A. V. Ghule, B. J. Chen, and Y. C. Ling, "Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study," Green Chemistry, vol. 8, pp. 1034-1041, 2006.
    [10] Y. F. Lan, Y. H. Chen, J. L. He, and J. T. Chang, "Microstructural characterization of high-quality indium tin oxide films deposited by thermionically enhanced magnetron sputtering at low temperature," Vacuum, vol. 107, pp. 56-61, Sep 2014.
    [11] H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, et al., "Indium tin oxide thin films for organic light-emitting devices," Applied Physics Letters, vol. 74, pp. 3444-3446, Jun 7 1999.
    [12] Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. B. Chen, X. Q. Pan, et al., "High-performance transparent conducting oxide nanowires," Nano Letters, vol. 6, pp. 2909-2915, Dec 13 2006.
    [13] H. Wu, L. B. Hu, T. Carney, Z. C. Ruan, D. S. Kong, Z. F. Yu, et al., "Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes," Journal of the American Chemical Society, vol. 133, pp. 27-29, Jan 12 2011.
    [14] P. D. Szkutnik, H. Roussel, V. Lahootun, X. Mescot, F. Weiss, and C. Jimenez, "Study of the functional properties of ITO grown by metalorganic chemical vapor deposition from different indium and tin precursors," Journal of Alloys and Compounds, vol. 603, pp. 268-273, Aug 5 2014.
    [15] J. R. Sheats and D. B. Roitman, "Failure modes in polymer-based light-emitting diodes," Synthetic Metals, vol. 95, pp. 79-85, Jun 15 1998.
    [16] G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices," Ieee Journal of Selected Topics in Quantum Electronics, vol. 4, pp. 83-99, Jan-Feb 1998.
    [17] A. Tolcin, "Minerals Yearbook-Indium."
    [18] A. M. Alfantazi and R. R. Moskalyk, "Processing of indium: a review," Minerals Engineering, vol. 16, pp. 687-694, Aug 2003.
    [19] H. F. Yao, J. L. Sun, W. Liu, and H. S. Sun, "Effect of a magnetic field on the preparation of silver nanowires using solid electrolyte thin films," Journal of Materials Science & Technology, vol. 23, pp. 39-42, Jan 2007.
    [20] Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, "Crystalline silver nanowires by soft solution processing," Nano Letters, vol. 2, pp. 165-168, Feb 2002.
    [21] R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, "Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes," Advanced Functional Materials, vol. 23, pp. 5150-5158, 2013.
    [22] Z. Q. Ding, Y. P. Zhu, C. Branford-White, K. Sun, S. Um-I-Zahra, J. Quan, et al., "Self-assembled transparent conductive composite films of carboxylated multi-walled carbon nanotubes/poly(vinyl alcohol) electrospun nanofiber mats," Materials Letters, vol. 128, pp. 310-313, Aug 1 2014.
    [23] X. Liu, K. Pan, W. Li, D. Hu, S. Liu, and Y. Wang, "Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol–gel method under different heat treatments," Ceramics International, vol. 40, pp. 9931-9939, 8// 2014.
    [24] J. Y. Zou, H. L. Yip, S. K. Hau, and A. K. Y. Jen, "Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells," Applied Physics Letters, vol. 96, May 17 2010.
    [25] S. J. Krumbein, "Metallic electromigration phenomena," IEEE transactions on components, hybrids, and manufacturing technology, vol. 11, pp. 5-15, 1988.
    [26] J. Colegrove. (2015, July, 1). Touch Display Research. Available: http://touchdisplayresearch.com/
    [27] D. J. Kim, H. J. Kim, K. W. Seo, K. H. Kim, T. W. Kim, and H. K. Kim, "Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels," Sci Rep, vol. 5, p. 16838, 2015.
    [28] H. Korbekandi, S. Iravani, and S. Abbasi, "Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp casei," Journal of Chemical Technology and Biotechnology, vol. 87, pp. 932-937, Jul 2012.
    [29] 池茗權, "觸控面板產業發展趨勢與展望," 2015.
    [30] "中國電鍍工業發展歷程概述及趨勢展望," 8月13日 2015.
    [31] 歐柏均, "脈衝電鍍銅鋅錫硫薄膜與光電特性分析," 成功大學光電科學與工程學系學位論文, pp. 1-111, 2014.
    [32] 忠诚, 电镀实用技术 500 问: 化学工业出版社, 2007.
    [33] H. L. Seet, X. P. Li, W. C. Ng, H. Y. Chia, H. M. Zheng, and K. S. Lee, "Development of Ni80Fe20/Cu nanocrystalline composite wires by pulse-reverse electrodeposition," Journal of Alloys and Compounds, vol. 449, pp. 279-283, Jan 31 2008.
    [34] S. Rode, C. Henninot, C. Vallières, and M. Matlosz, "Complexation Chemistry in Copper Plating from Citrate Baths," Journal of The Electrochemical Society, vol. 151, pp. C405-C411, June 1, 2004 2004.
    [35] 蔡梨暖, "鈷銅合金電鍍之研究," 碩士, 機械工程研究所, 大葉大學, 彰化縣, 2002.
    [36] S. M. S. I. Dulal and E. A. Charles, "Electrodeposition and composition modulation of Co–Ni(Cu)/Cu multilayers," Journal of Alloys and Compounds, vol. 455, pp. 274-279, 5/8/ 2008.
    [37] S. Rode, C. Henninot, and M. Matlosz, "Complexation Chemistry in Nickel and Copper-Nickel Alloy Plating from Citrate Baths," Journal of The Electrochemical Society, vol. 152, pp. C248-C254, April 1, 2005 2005.
    [38] S. K. Ghosh, A. K. Grover, G. K. Dey, and M. K. Totlani, "Nanocrystalline Ni–Cu alloy plating by pulse electrolysis," Surface and Coatings Technology, vol. 126, pp. 48-63, 4/3/ 2000.
    [39] L. Bonou, Y. Massiani, and J. Crousier, "Electrodeposition and corrosion behaviour of copper-nickel alloys," British Corrosion Journal, vol. 29, pp. 201-206, 1994.
    [40] T. Wang, "Study on Ni/Cu Alloy Plating and Pure Nickel," University of Alberta, 2015.
    [41] 施錫龍, "奈米壓印技術-一種習知於日常生活的技藝," 奈米通訊 NANO COMMUNICATION.
    [42] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B, vol. 14, pp. 4129-4133, Nov-Dec 1996.
    [43] S. Lan, H.-J. Lee, S.-H. Lee, J. Ni, X. Lai, H.-W. Lee, et al., "Experimental and numerical study on the viscoelastic property of polycarbonate near glass transition temperature for micro thermal imprint process," Materials & Design, vol. 30, pp. 3879-3884, 2009.
    [44] M. Worgull, M. Heckele, and W. Schomburg, "Large-scale hot embossing," Microsystem technologies, vol. 12, pp. 110-115, 2005.
    [45] L. Peng, Y. Deng, P. Yi, and X. Lai, "Micro hot embossing of thermoplastic polymers: a review," Journal of Micromechanics and Microengineering, vol. 24, p. 013001, 2014.
    [46] M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, et al., "Step and flash imprint lithography: a new approach to high-resolution patterning," in Microlithography'99, 1999, pp. 379-389.
    [47] Y. X. and and G. M. Whitesides, "SOFT LITHOGRAPHY," Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.
    [48] T. Tsuru, "Nano/subnano-tuning of porous ceramic membranes for molecular separation," Journal of Sol-Gel Science and Technology, vol. 46, pp. 349-361, 2008.
    [49] X. Huang, L.-R. Bao, X. Cheng, L. Guo, S. Pang, and A. Yee, "Reversal imprinting by transferring polymer from mold to substrate," Journal of Vacuum Science & Technology B, vol. 20, pp. 2872-2876, 2002.
    [50] A. Carvalho, M. Geissler, H. Schmid, B. Michel, and E. Delamarche, "Self-assembled monolayers of eicosanethiol on palladium and their use in microcontact printing," Langmuir, vol. 18, pp. 2406-2412, 2002.
    [51] N. Larsen, H. Biebuyck, E. Delamarche, and B. Michel, "Order in microcontact printed self-assembled monolayers," Journal of the American Chemical Society, vol. 119, pp. 3017-3026, 1997.
    [52] J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, and G. M. Whitesides, "Self-assembled monolayers of alkanethiolates on palladium are good etch resists," Journal of the American Chemical Society, vol. 124, pp. 1576-1577, 2002.
    [53] L.-R. Bao, X. Cheng, X. Huang, L. Guo, S. Pang, and A. Yee, "Nanoimprinting over topography and multilayer three-dimensional printing," Journal of Vacuum Science & Technology B, vol. 20, pp. 2881-2886, 2002.
    [54] M. Schlesinger and M. Paunovic, Modern electroplating vol. 55: John Wiley & Sons, 2011.
    [55] I. Baskaran, T. S. N. Sankara Narayanan, and A. Stephen, "Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties," Materials Letters, vol. 60, pp. 1990-1995, 7// 2006.
    [56] 侯进, "脉冲电镀及其电源," 电镀与环保, vol. 31, pp. 4-9, 2011.
    [57] 王晓云, "脉冲电镀原理及运用," 零八一科技, pp. 48-52, 2003.
    [58] 霍世琼, "脉冲电镀及其电源," 电子技术研究, vol. 2, pp. 87-90, 1989.
    [59] Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, "Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence," Nano Letters, vol. 3, pp. 955-960, Jul 2003.

    無法下載圖示 校內:2021-07-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE