簡易檢索 / 詳目顯示

研究生: 雷晨
Lei, Chen
論文名稱: 利用無人載具來達系統建構環境模型
Reconstructing Environment Model with SLAM on UV-LiDAR System
指導教授: 廖德祿
Liao, Teh-Lu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 44
中文關鍵詞: 來達光達即時定位與地圖構建姿態估測嵌入式系統
外文關鍵詞: LiDAR, SLAM, Simultaneous Localization And Mapping, pose estimation, embedded system
相關次數: 點閱:111下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來無人載具相關研究議題以及產品均有著爆炸性的發展,人們對於無人載具的要求與功能愈趨多元,這些需求直接與間接的驅促了相關感測器以及設備的發展,使得無人載具得以具備更多能力來解決各式各樣的問題。在諸多配備於無人載具上的感測器中,最常見也是應用最廣泛的莫過於「視覺」。本研究設計與實現一基於來達(光達,LiDAR)之掃描系統,並使用搭載於嵌入式電腦中之即時定位與地圖構建(SLAM)解決方案搭配,收集感測器所經沿途之所有掃描資料,匯整為圖資,同時也進行感測器自身姿態與方向之推估,最後將這些資訊透過無線傳輸發佈出去。此系統不僅讓搭載此系統之無人載具在沒有慣性測量單元(IMU)以及全球衛星定位系統(GPS)等設施之協助下得以「看見」周遭環境與障礙物、知道其所面對之方位,也使得位於遠端之使用者得以即時獲取無人載具周圍資訊。

    As UV researches and marketing have delivered an explosive growth in the recent decades, more and more demands have been raised by users. A number of developments and researches of sensors, peripherals, and ability for UVs have been prompted to solve a variety of problems and missions for fulfilling these demands. The most common one among these desired abilities mentioned above is the “vision”. The proposed system of this study first collects odometry data with LiDARs, which is mounted on a rotatory platform, then the data are collected and gathered into a map by an embedded device with SLAM package, also, the pose estimation of LiDARs is finished at the same time. Finally, these information of pose and map are published via Wi-Fi. With this system, UVs are able to know its orientation and “see” the surroundings without the aid of IMU, GPS and other sensors, and give an real-time information to the user to know the situation of UV at the same time.

    摘要 I Abstract II 誌謝 III CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Scope 3 1.3 Thesis Outline 4 CHAPTER 2 Simultaneous Localization And Mapping 5 2.1 What is SLAM? 5 2.2 Basic concept of SLAM 6 2.3 Occupancy probability and map access 7 2.4 Scan Matching 10 CHAPTER 3 Implementation 13 3.1 Lidar-Lite v2 13 3.2 Rotatory Platform 16 3.3 PCB and Driver 19 3.4 SLAM Processing 23 3.4.1 ROS 24 3.4.2 Hector SLAM 25 3.4.3 ODROID and Ubuntu ARM 26 3.5 Overview 27 CHAPTER 4 Experimentation 29 CHAPTER 5 Conclusion 41 5.1 Conclusion 41 5.2 Future Work 41 References 43

    [1] F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, and D. Sarazzi. "UAV photogrammetry for mapping and 3d modeling–current status and future perspectives." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38.1 (2011): C22.
    [2] 黃大峯. "應用於多旋翼機即時影像視覺導航." 成功大學民航研究所學位論文(2014): 1-56.
    [3] D. W. Casbeer, S.-M. Li , R. W. Beard , T. W. McLain, and R. K. Mehra, "Forest fire monitoring using multiple small UAVs", Proc. ACC, pp. 3531-3535, 2005
    [4] Velodyne HDL-32E LiDAR, available in June 2016 from website http://velodynelidar.com/hdl-32e.html
    [5] H. M. Tulldahl, and H. Larsson. "Lidar on small UAV for 3D mapping." SPIE Security+ Defence. International Society for Optics and Photonics, 2014.
    [6] H. M. Tulldahl, F. Bissmarck, H. Larsson, C. Grönwall, and G. Tolt. "Accuracy evaluation of 3D lidar data from small UAV." SPIE Security+ Defense. International Society for Optics and Photonics, 2015.
    [7] J. Levinson, and S. Thrun. "Robust vehicle localization in urban environments using probabilistic maps." Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2010.
    [8] D. H. Shim, H. Chung, and S. S. Sastry. "Conflict-free navigation in unknown urban environments." Robotics & Automation Magazine, IEEE 13.3 (2006): 27-33.
    [9] C. Ramer, J. Sessner, M. Scholz, X. Zhang, and J. Franke. "Fusing low-cost sensor data for localization and mapping of automated guided vehicle fleets in indoor applications." Multisensor Fusion and Integration for Intelligent Systems (MFI), 2015 IEEE International Conference on. IEEE, 2015.
    [10] PulsedLight | Makers of LIDAR-Lite: 500 Hz Assignable I2C Addresses & More!, available in April 2016 from website http://pulsedlight3d.com/R. Smith, M. Self, and P. Cheeseman.
    [11] "Estimating uncertain spatial relationships in robotics." Autonomous robot vehicles. Springer New York, 1990. 167-193.
    [12] M. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba. “A solution to the simultaneous localization and map building (SLAM) problem." Robotics and Automation, IEEE Transactions on 17.3 (2001): 229-241.
    [13] G. Grisetti, C. Stachniss, and W. Burgard. "Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling." Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, 2005.
    [14] R. C. Smith, and P. Cheeseman. "On the representation and estimation of spatial uncertainty." The international journal of Robotics Research 5.4 (1986): 56-68.
    [15] S. Kohlbrecher, O. Stryk, J. Meyer, and U. Klingauf. "A flexible and scalable slam system with full 3d motion estimation." Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on. IEEE, 2011.
    [16] LIDAR-Lite 2 Laser Rangefinder (PulsedLight) – RobotShop, available in June 2016 from website http://www.robotshop.com/en/lidar-lite-2-laser-rangefinder-pulsedlight.html
    [17] LIDAR-Lite Operating Manual, available in June 2016 from website http://0cm.us/hosting/pl3d/LIDAR-Lite-Operating-Manual.pdf
    [18] About ROS, available in June 2016 from website http://www.ros.org/about-ros/
    [19] catkin_or_rosbuild – ROS Wiki, available in June 2016 from website http://wiki.ros.org/catkin_or_rosbuild
    [20] J. M. Santos, D. Portugal, and R. P. Rocha. "An evaluation of 2D SLAM techniques available in robot operating system." Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on. IEEE, 2013.
    [21] Ubuntu ARM install of ROS Jade, available in June 2016 from website http://wiki.ros.org/jade/Installation/UbuntuARM

    下載圖示 校內:2021-08-09公開
    校外:2021-08-09公開
    QR CODE