簡易檢索 / 詳目顯示

研究生: 藍源富
Lan, Yuan-Fu
論文名稱: 懸臂式疊晶於黏彈性薄膜黏晶膠下打線接合性研究
Bondability of Wire Bonding for Overhang Stacked Die with Viscoelastic Die Attach Film
指導教授: 李超飛
Lee, Chau-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 104
中文關鍵詞: 堆疊晶片3D電子構裝薄膜式黏晶膠懸臂式打線接合
外文關鍵詞: DAF, 3D package, wire bond, overhang, stacked die
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為滿足使用者的需求,消費性電子產品,愈來愈講究輕薄短小之可攜特性與多功能,以致3D電子構裝為之因應而生,即將晶片作薄化處理並以堆疊晶片型式於一封裝體中,以整合單種或多種晶片,來節省封裝所占空間及晶片開發時間以快速反應市場的需求。本文研究懸臂式疊晶之打線接合性以提供設計準則。
    打線接合已經是一個很成熟的技術,一般的打線接合研究,多在支撐物的支撐下進行,所以在打線過程中晶片(鋁墊)與銲針是相對固定不動的,然而因為是懸臂結構,晶片在懸臂區域為沒支撐的狀況,當打線接合力作用時,晶片會下沉撓曲;又因DAF為黏彈性材料在與晶片接合下拘束條件會引發潛變效應使撓曲隨時間之延長而更下沉,並使超音波震盪能量無法完整的傳輸至金鋁接合面,導致共晶不良,推球值無法達到品質要求。
    為了得到懸臂疊晶結構的設計準則,首先利用接合力、振動功率與接合時間,為打線接合的三個參數設計實驗方法,並用推球值(>18g)來驗證懸臂疊晶的打線接合特性。在確定好的接合參數下以有限元素法預估懸臂端點下沉撓曲量,以對應出可作業之範圍(有效懸臂長度),在晶片厚度為100um下,接合力25g、振動功率43~50DAC及接合時間20ms下,二層疊晶與三層疊晶的總懸臂長度設計規範分別為1.2mm與1.75mm(前懸臂+後懸臂,且前懸臂≧後懸臂)。

    Portable electrical products are trended to light、thin、short and merge more functions into a single package. To reduce the required space for packages and developed time for chips, 3D electronic packages are evolued to meet the requests of market.
    This paper focuses on the bondability of overhang stacked die and then provides a design rule for stacking. Actually, Wire Bonding is a mature technology and most of the studys are under a supporting structure during bonding. Threrfore, the chip(Al pad) is fixed relative to the capilly, however for overhang structure, the chip has no supporting at overhang area, the chip is sunk and deflected due to bonding forces applied. More over, under the bond constraints of chip with viscoelastic DAF, the DAF creep effect will make more downward deflection. As a result, the ultrasonic energy can not be fully transferred to the Au-Al interfaces to make sufficient eutectic join.These bad qualities are exposed by the ball shear test.
    Using bond force、bond power and bond time as three parameters of bondability, the experiment methods are designed, performed and then verified by the ball shear test(>18g). With good three parameters of bondability obtained, FEM is employed to simulate the chip deflection at overhang edge and then to determine the workable range (effective overhang length). For 100um chip thickness, the design rule for the total overhang length of 2-stacked die and 3-stacked die are 1.2mm and 1.75mm (front overhang + back overhang, front overhang length≧back overhang length)

    摘要 I ABSTRACT Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 符號說明 XⅢ 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 1 1-3 文獻回顧 1 1-4 研究方法 3 1-5 章節提要 3 第二章 懸臂式疊晶封裝打線技術及打線接合性品質 4 2-1疊晶封裝技術 4 2-2懸臂式疊晶打線接合技術 9 2-2-1疊晶打線接合流程 9 2-3 懸臂式疊晶打線接合性之品質檢測 10 第三章 薄膜式黏晶材料(DAF)之熱黏彈性行為 21 3-1 DAF 材料簡介 21 3-2 熱黏彈性理論 23 3-2-1 廣義的麥斯威爾模式(Generalized Maxwell Model) 24 3-3 DAF的熱黏彈性材料參數 27 3-3-1黏彈性剪力鬆弛模數之探討 28 3-3-2 黏彈性材料Reduced Time 29 第四章 懸臂式疊晶打線接合性實驗之規劃與檢測方法 42 4-1 前言 42 4-2 懸臂式疊晶打線接合性之實驗規劃 43 4-3 懸臂式疊晶打線接合性之檢測方法 44 第五章 懸臂式疊晶打線接合性之實驗結果與討論 50 5-1 打線接合力影響接合強度之實驗結果 50 5-2 打線振動功率影響接合強度之實驗結果 51 5-3 打線接合時間影響接合強度之實驗結果 53 5-4 實驗結論 54 第六章 懸臂晶片撓曲模擬與打線接合性之討論 70 6-1 懸臂晶片撓曲有限元素模型之建立 70 6-2 元素型態與材料參數 70 6-3 負載、邊界條件與網格建立 73 6-4 懸臂晶片撓曲之模擬結果 74 6-4-1懸臂晶片撓曲量量測 74 6-4-2懸臂晶片於接合力作用下之撓曲模擬 75 6-5 懸臂晶片撓曲與打線接合性之關聯與討論 78 第七章 結論與未來方向 100 7-1 結論 100 7-2 未來方向 101 參考文獻 102 自述 104

    [1] O’Brien D. J., Mather P. T., and White S. R., “Viscoelastic Properties of an Epoxy Resin during Cure,” Journal of Composite Materials, Vol. 35, No.10, pp.883-904, 2001.
    [2] Wu, L., Wang, Y.P., Kee S.C., Wallace, B., Hsiao, C.S., Yeh, C.K., Her T.D.,and Lo, R.,”The Advent of 3-D Package Age,” Int’l Electronics Manufacturing Techonlogy Symposium, IEEE/CPMT,2000.
    [3] Chylak, B. and Wei Qin, I., “Package challenges Solutions for Multi-Stacked Die Applicatoins,” SEMICON West ,SEMI technology Symposium,2002.
    [4] Schulze, G., Tang , S.,and Wei Qin, I.,”Wire Bonding Solutions for Stack Die Packages: Numerical Simulation and Experimental Study of Overhang Configurations,” SEMICON Singapore 2003,SEMI 2003.
    [5] Karnezos, M.,”3-D Package: Where All Technologies Come Together,” Int’l Electronics Manufacturing Techonlogy Symposium,” IEEE/CPMT,2004.
    [6] 呂明憲, “ACF非線性材料特性於金凸塊壓合製程中力學分析” 國立成功大學工程科學系碩士論文, 中華民國九十四年六月.
    [7] Aklonis, J. J., MacKnight, W. J., and Silen, M., “Introduction to Polymer Viscoelasticity,” John Wiley & Sons, Inc., 1972.
    [8] Hilton H. H. “Comments Regarding “Viscoelastic Properties of an Epoxy Resin during Cure” by D. J. O’Brien, P. T. Mather and S. R. White,” Journal of Composite Materials, Vol. 37, No. 1, pp.89-94, 2003.
    [9] Carson, F., Narvaez, G., Choi, HC,and Son, DW, “Stack Die CSP Interconnect Challenges,” IEEE/CPMT,2002.
    [10] ANSYS Menu, “Structures with Material Nonlinearities,” ANSYS Theory Reference 8.0, Ch.4, 2003.
    [11] ANSYS Menu, “Element Library,” ANSYS Element Reference 8.0, Part 1, 2003.
    [12] ANSYS Menu, “Viscoelastic Material Constants,” ANSYS Element Reference 8.0, Ch2, 2003.
    [13] Pecht, M. G., “Electronic Packaging Materials and Their Properties,” CRC Press LLC, 1999.
    [14] Tummala R. R., “Fundamentals of Microsystems Packaging,”The McGraw-Hill Companies, Inc, 2001.
    [15] Prasad, S. K., ” Advanced Wirebond Interconnection Technology,” INKROMA, Bangalore, India, 2004
    [16] ap.pennnet.com
    [17] www.kns.com
    [18] nepp.nasa.gov

    下載圖示 校內:2007-07-31公開
    校外:2007-07-31公開
    QR CODE