| 研究生: |
林依雯 Lin, Yi-Wen |
|---|---|
| 論文名稱: |
合成各種孔洞氧化矽材料應用於音質改善及牙根尖填充 Synthesis of Various Porous Silica Materials for Sound Quality Improvement and Apical Filling |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 孔洞氧化矽 、海藻酸鈉 、音響材料 、三氧礦化物 |
| 外文關鍵詞: | porous silica, acoustic materials, sodium alginate, mineral trioxide aggregate |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用對環境友善之有機模板合成具有高比表面積的孔洞氧化矽材料,並依
據孔洞氧化矽材料的孔洞可調性,分別運用於音響材料及牙根尖周炎填充材料中。在
音響材料方面,藉孔洞氧化矽之孔洞使聲音進入孔洞後可減少高音頻之建設性干涉,
突顯低頻,改善音質;在孔洞材料合成時,藉由控制水熱時間將孔徑控制於微孔尺度
下,之後引入對同樣環境友善之海藻酸鈉作為黏著劑進行造粒,以利置入微型音箱中
進行共振頻率測試。實驗結果顯示,由於海藻酸鈉在造粒過程中會堵塞孔洞使共振頻
率提高,因此需對造粒製程上做些微調整。其中,若將孔洞氧化矽材料與作為孔洞保
護劑之矽凝膠混合再進行造粒可使共振頻率下降約 62 赫茲。除添加保護劑外,本實
驗亦嘗試使用鋁離子異相成核作為鍛燒移除有機物後之無機黏著劑,雖然經過高溫鍛
燒後可使造粒承受力提高至 1 公斤,但在頻率測試中,其共振頻率下降不顯著。本實
驗於最後對於各種影響共振頻率之因素進行排序,由大至小分別為:有機物含量、親
疏水性、孔洞大小,此外,機械強度也必須兼顧。另一方面,本實驗將孔洞氧化矽材
料之孔洞擴大至中孔,並與硝酸鈣混合後高溫鍛燒形成具有二鈣矽酸鹽與三鈣矽酸鹽
之三氧礦化物(MTA),用於牙根填補材料。實驗中也使用不同構型之囊泡狀孔洞氧化
矽進行合成,可得到三鈣矽酸鹽占比更高之三氧礦化物;實驗最後將材料固化後浸泡
模擬體液探討其反應機制,也針對硬度進行機械強度壓強測試,其中,以囊泡狀中孔
洞二氧化矽為氧化矽源,並以鈣矽比 3.0 之參數所固化後的錠片可承受力最高,可達
與市售 MTA 相同受力 7 公斤。
In this study, micropore and mesopore were synthesized by soft template method with different templates and used in different fields. Microporous silica was applied to acoustic material and placed in phone speaker to reduce the sound frequency. And, mesoporous silica was used as the base for dental root-end filling material.
In acoustic materials, current studies show that microporous materials have good
performance, but it needs complicated synthesis steps and is highly-priced. This study provided a simple and cheap method to synthesize microporous silica. Besides, granulation by gelation of alginate was introduced to the procedure for the transforming from powder to granules. However, the material after granulation was hydrophilic, and the mechanical strength was poor. To improve the hydrophobicity and mechanical strength, many different methods were introduced to improve and test their effects. The whole process gave the advantages including greatly reducing water adsorption, highly increasing mechanical strength, and completely removing organic matters. In the frequency test, the best parameters of the granulation had a resonant frequency drop of about 62 Hz. As for dental root-end fill materials, the material mainly used is mineral trioxide aggregate (MTA) extended by Portland Cement as the main component. MTA has the characteristic
of hardening in water, so it is very suitable for use in surgery. Besides, MTA is highly
alkaline, antimicrobial, and biologically active, so it can affect the oral environment, and promote the formation of dentin. The biggest problem with commercial MTA is the heavy metal content from the extracted raw materials. Although there is still no pathogenicity of these heavy metals literately, the hematoxylin may react with them and stain the dentin. Therefore, other research has tried to synthesize MTA materials themselves. However, these synthetic steps may require the addition of organic solvents, be too complicated, or have a high risk. In this study, a simple and safe process for the synthesis of MTA was introduced by physically mixing calcium nitrate and mesoporous silica with water. The heavy metal-free product was obtained after removing water and calcination. Products were analyzed by XRD and immersed in simulated buffer fluid (SBF) solution for testing.
1. Kresge, A. C., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature, 359(6397), 710-712.
2. Albayati, T.M. and A.M. AlKafajy, Mesoporous Silica MCM-41 as a Carriers Material for Nystatine Drug in Delivery System. Al-Khwarizmi Engineering Journal, 2019. 15(2): p. 34-43.
3. Wu, S.-H., C.-Y. Mou, and H.-P. Lin, Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013. 42(9): p. 3862-3875.
4. Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Feng, P., Gier, T. E., ... & Chmelka, B. F. (1994). Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chemistry of Materials, 6(8), 1176-1191.
5. Brinker, C.J. and G.W. Scherer, Sol→ gel→ glass: I. Gelation and gel structure. Journal of Non-Crystalline Solids, 1985. 70(3): p. 301-322.
6. Aelion, R., A. Loebel, and F. Eirich, Hydrolysis of ethyl silicate. Journal of the American Chemical Society, 1950. 72(12): p. 5705-5712.
7. 劉冠岑,使用陰-陽離子混合界面活性劑核成各種型態之中孔洞氧化矽、磷酸鈣、磷酸鈣/二氧化矽複合材料. 2011.
8. 盧宏陽, 以溶膠--凝膠法合成高分子基氧化矽複合材料之研究. 2001.
9. Walton, R.I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews, 2002. 31(4): p. 230-238.
10. Laudise, R.A., Hydrothermal synthesis of crystals. 50 years Progress in Crystal Growth, 2004: p. 185.
11. Auerbach, S. M., Carrado, K. A., & Dutta, P. K. (2003). Handbook of zeolite science and technology. CRC press.
12. 周瑋仁, 鄭淑芬, Nafion/ZSM-5 複合材料於直接甲醇燃料電池質子交換膜之應用. 2011.
13. Leeuwenhoek, A. V. (1975). Microscopical observations of the structure of teeth and other bones: made and communicated, in a letter by Mr. Anthony Leeuwenhoeck. Philosophical Transactions of the Royal Society of London, 12(140), 1002-1003.
14. Ndong, F., Sadhasivam, S., Lin, F. H., Savitha, S., Wen‐Hsi, W., & Lin, C. P. (2012). The development of iron‐free partially stabilized cement for use as dental root‐end filling material. International Endodontic Journal, 45(6), 557-564.15. Li, H., et al., Materials for retrograde filling in root canal therapy. Cochrane Database of Systematic Reviews, 2021(10).
16. Donohue, M. and G. Aranovich, Classification of Gibbs adsorption isotherms. Advances in colloid and interface science, 1998. 76: p. 137-152.
17. Bardestani, R., G.S. Patience, and S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 2019. 97(11): p. 2781-2791.
18. Jauncey, G. E. M. (1924). The scattering of x-rays and Bragg's law. Proceedings of the national academy of sciences, 10(2), 57-60.
19. Zhang, X. and S. Che, Mesoporous Silica Microspheres Composited with SBA-15s for Resonance Frequency Reduction in a Miniature Loudspeaker. Chemical Research in Chinese Universities, 2020. 36(5): p. 760-767.
20. Huang, Y., Zhou, D., Xie, Y., Yang, J., & Kong, J. (2014). Tunable sound absorption of silicone rubber materials via mesoporous silica. Rsc Advances, 4(29), 15171-15179.
21. Suzuki, Y., & Takeshima, H. (2004). Equal-loudness-level contours for pure tones. The Journal of the Acoustical Society of America, 116(2), 918-933.
22. Jiang, Y. W., Xu, D. P., Kwon, J. H., Jiang, Z. X., Kim, J. H., & Hwang, S. M. (2019). Analysis and application of zeolite in microspeaker box. Journal of Mechanical Science and Technology, 33(8), 3679-3683.
23. Gao, Y., Kang, X., Li, J., Zhang, F., Kang, N., & Liu, H. (2019). U.S. Patent Application No. 16/236,336.
24. 蔡宜庭, 林弘萍, 氧化矽及矽酸鐵孔洞材料之合成與應用. 2019.
25. McHugh, D. J. (1987). Production, properties and uses of alginates. Production and Utilization of Products from Commercial Seaweeds. FAO. Fish. Tech. Pap, 288, 58-115.
26. Shalapy, A., Zhao, S., Zhang, C., Li, Y., Geng, H., Ullah, S., ... & Liu, Y. (2020). Adsorption of deoxynivalenol (DON) from corn steep liquor (CSL) by the microsphere adsorbent SA/CMC loaded with calcium. Toxins, 12(4), 208.
27. Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Progress in polymer science, 2012. 37(1): p. 106-126.
28. Augst, A.D., H.J. Kong, and D.J. Mooney, Alginate hydrogels as biomaterials. Macromolecular bioscience, 2006. 6(8): p. 623-633.
29. Hu, C., Lu, W., Mata, A., Nishinari, K., & Fang, Y. (2021). Ions-induced gelation of alginate: Mechanisms and applications. International Journal of Biological Macromolecules, 177, 578-588.
30. Plazinski, W. and M. Drach, Binding of bivalent metal cations by α-L-guluronate: insights from the DFT-MD simulations. New Journal of Chemistry, 2015. 39(5): p. 3987-3994.
31. Al-Musa, S., D.A. Fara, and A. Badwan, Evaluation of parameters involved in preparation and release of drug loaded in crosslinked matrices of alginate. Journal of controlled release, 1999. 57(3): p. 223-232.
32. Liu, Y., Zhao, J. C., Zhang, C. J., Guo, Y., Cui, L., Zhu, P., & Wang, D. Y. (2015). Bio-based nickel alginate and copper alginate films with excellent flame retardancy: preparation, flammability and thermal degradation behavior. RSC advances, 5(79), 64125-64137.
33. Liu, Y., Li, Z., Wang, J., Zhu, P., Zhao, J., Zhang, C., ... & Jin, X. (2015). Thermal degradation and pyrolysis behavior of aluminum alginate investigated by TG-FTIR-MS and Py-GC-MS. Polymer Degradation and Stability, 118, 59-68.
34. Luo, X., Guo, J., Chang, P., Qian, H., Pei, F., Wang, W., ... & Feng, G. (2020). ZSM-5@ MCM-41 composite porous materials with a core-shell structure: Adjustment of mesoporous orientation basing on interfacial electrostatic interactions and their application in selective aromatics transport. Separation and Purification Technology, 239, 116516.
35. Pimpinelli, A., & Villain, J. (1999). Physics of crystal growth (p. 400).
36. Liu, X. Y. (2000). Heterogeneous nucleation or homogeneous nucleation?. The Journal of Chemical Physics, 112(22), 9949-9955.
37. Stol, R. V., Van Helden, A. K., & De Bruyn, P. L. (1976). Hydrolysis-precipitation studies of aluminum (III) solutions. 2. A kinetic study and model. Journal of Colloid and Interface Science, 57(1), 115-131.
38. 涂明君, MTA (Mineral Trioxide Aggregate) 的基礎知識與臨床應用. 中市牙醫學雜誌, 80 (2): 16-19, 2011.
39. Chang, S. W., Shon, W. J., Lee, W., Kum, K. Y., Baek, S. H., & Bae, K. S. (2010). Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 109(4), 642-646.
40. Jang, Y. E., Lee, B. N., Koh, J. T., Park, Y. J., Joo, N. E., Chang, H. S., ... & Hwang, Y. C. (2014). Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials. Restorative dentistry & endodontics, 39(2), 89-94.
41. Li, X., A. Ouzia, and K. Scrivener, Laboratory synthesis of C3S on the kilogram scale. Cement and Concrete research, 2018. 108: p. 201-207.
42. Voicu, G., Bădănoiu, A. I., Ghiţulică, C. D., & Andronescu, E. (2012). Sol-gel synthesis of white mineral trioxide aggregate with potential use as biocement. Digest Journal of Nanomaterials and Biostructures, 7(4), 1639-1646.
43. He, Z., Liang, W., Wang, L., & Wang, J. (2010). Synthesis of C3S by sol-gel technique and its features. Journal of Wuhan University of Technology-Mater. Sci. Ed., 25(1), 138-141.44. Clinker minerals, in Cement Kilns.
45. Camilleri, J., Borg, J., Damidot, D., Salvadori, E., Pilecki, P., Zaslansky, P., & Darvell, B. W. (2020). Colour and chemical stability of bismuth oxide in dental materials with solutions used in routine clinical practice. PLoS One, 15(11), e0240634.
46. 張以潔, 林弘萍, 氧化矽孔洞材料與金屬矽酸鹽複合材料之合成與應用. 2017.
47. Yang, J. C., Hu, X. T., Da Wu, H., & Lee, S. Y. (2010). 提升植牙成功率的新型合成骨填補材 BonaGraft 之研發與應用. In 臨床牙醫植體學精要 (pp. 488-499). 臺灣牙醫植體醫學會.
48. Ohgushi, H., Okumura, M., Yoshikawa, T., Inboue, K., Senpuku, N., Tamai, S., & Shors, E. C. (1992). Bone formation processin porous calcium carbonate and hydroxyapatite. Journal of biomedical materials research, 26(7), 885-895.
49. Neeraj Malhotra, M., M. Antara Agarwal, and M. Kundabala Mala, Mineral trioxide aggregate: a review of physical properties. Compendium, 2013. 34(2).
50. Kenny, M. and T. Oates, Lime and limestone. Ullmann's Encyclopedia of Industrial Chemistry, 2000.