簡易檢索 / 詳目顯示

研究生: 陳弘益
Chen, Hung-Yi
論文名稱: 發展紙基微流體晶片檢測牛乳房炎
Development of paper-based microfluidics for detection of bovine mastitis
指導教授: 莊怡哲
Zhuang, Yi-Zhe
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 101
中文關鍵詞: 牛乳房炎紙基微流體酵素免疫分析法色彩強度分析
外文關鍵詞: mastitis, paper-based microfluidics, enzyme-linked immunosorbent assay (ELISA), cathelicidin, somatic cell counts
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 牛乳房炎是乳牛乳房內的傳染病,通常會造成牛乳房紅腫硬化,並會降低牛乳的品質以及產量,是一種造成畜牧業年損失最大的疾病。目前檢測牛乳房炎的方式,例如:物理檢測、美國加州福尼亞檢測、電導度方法等等。然而近幾年來,紙基微流體裝置(µPAD)受到各界廣泛的關注,因為它具有簡單、可攜帶、可拋棄以及低成本的特性,可用於低成本的化學、生物及環境檢測等等。再者因為樣本與試劑不須使用機械或電子設備,單純以毛細現象即可進行輸送,降低了許多設備成本,而使其更容易作為檢測的裝置。目前已經發展出許多不同製備紙基微流體裝置的方法,例如:噴墨印刷法(inkjet printing)、紙張切割法(craft cutting),以及光微影法(photolithography)等多種方法。在本研究中,我們透過結合酵素免疫分析法(ELISA)以及紙基微流體裝置研發一種新的紙基酵素免疫分析法(p-ELISA)來檢測牛乳房炎。這種方法首先需要在濾紙上壓出圖形,並塗上一層蠟,於加熱板加熱即可完成晶片,再利用酵素免疫分析法的間接法檢測牛乳房炎蛋白。實驗中將研究的操作條件,有抗體和抗原的濃度、用量,沖洗未標定抗體的用量及次數,以及檢測的色彩強度分析等。實驗結果顯示清洗次數及劑量會影響未專一性鍵結抗體所造成的訊號干擾,然而在抗體濃度方面,二抗濃度太高時,容易造成背景干擾,二抗濃度太低時,則會影響鍵接一抗的效果,而一抗使用濃度會影響抗原和二抗與其結合的數量。使用一抗濃度為2µg/mL,二抗濃度為0.05µg/mL,且每次清洗為10µL洗五次時,檢測PBS緩衝溶液中的Cathelicidin蛋白,在0.05~5µg/mL之間色彩強度會呈一線性關係,檢測最低濃度為0.05µg/mL。若使用牛乳直接進行檢測,則檢測最低濃度為0.5µg/mL。

    Bovine mastitis is an intramammary infection disease in dairy cows, which usually causes udder swelling, redness, hardness, and even reduction in milk quantity. In recent years, microfluidic paper-based analytical device (µPAD) has been attracting attention because it is simple, inexpensive and power-free for fluid transport. In this study, we intended to establish a new approach to detect bovine mastitis by constructing a paper-based enzyme-linked immunosorbent assay (p-ELISA). The results showed that when using a primary antibody concentration of 2µg/mL, a secondary antibody concentration of 0.05µg/mL, and each wash with 10µL for five times, there existed a linear relationship between the color intensity and the concentration of Cathelicidin protein in PBS solution ranging from 0.05~5µg/mL. The detection limit was 0.05µg/mL. When commercial milk is used for detection, the detection limit was found out to be 0.5µg/mL.

    目錄 中文摘要 i Extended Abstract iii 誌謝 xiv 目錄 xv 圖目錄 xix 表目錄 xxiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與方法 1 第二章 文獻回顧 3 2.1 紙基微流體 3 2.2 紙基微流體的製作 5 2.2.1 Handcrafted 6 2.2.2 Mask 8 2.2.3 Printing 10 2.2.4 Cutting/Shaping 13 2.2.5 其他方法 14 2.3 紙基微流體之檢測方法 18 2.3.1 光度檢測法 18 2.3.2 螢光檢測法 19 2.3.3 電化學檢測法 20 2.4 紙基微流體之應用 21 2.4.1 臨床檢測 21 2.4.2 環境監控 22 2.4.3 食安分析 23 2.5 酵素結合免疫分析法(ELISA) 24 2.5.1 直接酵素結合免疫分析法 24 2.5.2 間接酵素結合免疫分析法 26 2.5.3 三明治酵素結合免疫分析法 28 2.5.4 競爭酵素結合免疫分析法 30 2.6 牛乳腺炎 31 2.6.1 牛乳腺炎症狀及影響 31 2.6.2 牛乳腺炎檢測方式 32 2.6.2.1 加州乳房炎檢驗法 32 2.6.2.2 乳汁電導度 33 第三章 實驗材料及方法 34 3.1 實驗藥品與材料 34 3.2 實驗儀器 37 3.3 實驗步驟 42 3.3.1 製備紙基微流體裝置 42 3.3.2 酵素結合免疫分析法檢測的應用 43 第四章 結果與討論 45 4.1作用區大小的影響 45 4.2 實驗試劑濃度及清洗次數的影響 50 4.2.1 二抗濃度 50 4.2.2 清洗有效次數 53 4.2.3 抗原濃度 55 4.2.4 一抗濃度 57 4.3 牛乳腺炎檢測 60 4.3.1 PBS緩衝液 60 4.3.2 市售牛乳 63 4.4 一步驟紙基檢測牛乳腺炎 65 4.4.1側流免疫分析法 65 4.4.2紙基材質選擇 66 4.4.3封閉液(blocking buffer)選擇 67 4.4.4 一步驟紙基檢測牛乳房炎(PBS緩衝液) 68 第五章 結論 70 第六章 未來工作與展望 71 第七章 參考文獻 72

    1. Cheng, C.-M., et al., Paper-Based ELISA. Angewandte Chemie, 2010. 122(28): p. 4881-4884.
    2. Manz, A., N. Graber, and H.á. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, 1990. 1(1-6): p. 244-248.
    3. Schalm, O., Experiments and observations leading to development of the California Mastitis Test. J. Am. Vet. Med. Assoc., 1957. 130: p. 199-204.
    4. Fernando, R., R. Rindsig, and S. Spahr, Electrical conductivity of milk for detection of mastitis. Journal of Dairy Science, 1982. 65(4): p. 659-664.
    5. Smolenski, G., et al., Characterisation of host defence proteins in milk using a proteomic approach. Journal of proteome research, 2007. 6(1): p. 207-215.
    6. Smolenski, G.A., et al., The abundance of milk cathelicidin proteins during bovine mastitis. Vet Immunol Immunopathol, 2011. 143(1-2): p. 125-30.
    7. Akyazi, T., L. Basabe-Desmonts, and F. Benito-Lopez, Review on microfluidic paper-based analytical devices towards commercialisation. Analytica chimica acta, 2018. 1001: p. 1-17.
    8. Martinez, A.W., et al., Patterned paper as a platform for inexpensive, low‐volume, portable bioassays. Angewandte Chemie International Edition, 2007. 46(8): p. 1318-1320.
    9. Lu, Y., et al., Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay. Electrophoresis, 2009. 30(9): p. 1497-1500.
    10. Hong, W., et al., Wax Spreading in Paper under Controlled Pressure and Temperature. Langmuir, 2018. 34(1): p. 432-441.
    11. Dungchai, W., O. Chailapakul, and C.S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst, 2011. 136(1): p. 77-82.
    12. Li, X., et al., based microfluidic devices by plasma treatment. Analytical chemistry, 2008. 80(23): p. 9131-9134.
    13. Xu, C., et al., Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink. Rsc Advances, 2015. 5(7): p. 4770-4773.
    14. Cate, D.M., et al., Recent developments in paper-based microfluidic devices. Analytical chemistry, 2015. 87(1): p. 19-41.
    15. Zhang, Y., et al., Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing. Analytical chemistry, 2014. 86(4): p. 2005-2012.
    16. Durán, G.M., et al., Quantum dot-modified paper-based assay for glucose screening. Microchimica Acta, 2016. 183(2): p. 611-616.
    17. Songjaroen, T., et al., Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta, 2011. 85(5): p. 2587-2593.
    18. Abe, K., K. Suzuki, and D. Citterio, Inkjet-printed microfluidic multianalyte chemical sensing paper. Analytical chemistry, 2008. 80(18): p. 6928-6934.
    19. Li, X., et al., Fabrication of paper-based microfluidic sensors by printing. Colloids and surfaces B: Biointerfaces, 2010. 76(2): p. 564-570.
    20. Fu, E., et al., Chemical signal amplification in two-dimensional paper networks. Sensors and Actuators B: Chemical, 2010. 149(1): p. 325-328.
    21. Mahmud, M., et al., Features in microfluidic paper-based devices made by laser cutting: How small can they be? Micromachines, 2018. 9(5): p. 220.
    22. Olkkonen, J., K. Lehtinen, and T. Erho, Flexographically printed fluidic structures in paper. Analytical chemistry, 2010. 82(24): p. 10246-10250.
    23. Shin, J.H., J. Park, and J.-K. Park, Organic solvent and surfactant resistant paper-fluidic devices fabricated by one-step embossing of nonwoven polypropylene sheet. Micromachines, 2017. 8(1): p. 30.
    24. Scida, K., et al., DNA detection using origami paper analytical devices. Analytical chemistry, 2013. 85(20): p. 9713-9720.
    25. Demirel, G. and E. Babur, Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst, 2014. 139(10): p. 2326-2331.
    26. Cate, D.M., et al., Simple, distance-based measurement for paper analytical devices. Lab on a Chip, 2013. 13(12): p. 2397-2404.
    27. Hossain, S.M.Z. and J.D. Brennan, β-Galactosidase-Based Colorimetric Paper Sensor for Determination of Heavy Metals. Analytical Chemistry, 2011. 83(22): p. 8772-8778.
    28. Jokerst, J.C., et al., Development of a Paper-Based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens. Analytical Chemistry, 2012. 84(6): p. 2900-2907.
    29. Shi, J.J., et al., Electrochemical Detection of Pb and Cd in Paper-Based Microfluidic Devices. Journal of the Brazilian Chemical Society, 2012. 23(6): p. 1124-1130.
    30. Liu, W., et al., Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables. Biosensors & Bioelectronics, 2014. 52: p. 76-81.
    31. Beier, J.C., et al., BLOODMEAL IDENTIFICATION BY DIRECT ENZYME-LINKED IMMUNOSORBENT-ASSAY (ELISA), TESTED ON ANOPHELES (DIPTERA, CULICIDAE) IN KENYA. Journal of Medical Entomology, 1988. 25(1): p. 9-16.
    32. Hsu, C.K., et al., Paper-based ELISA for the detection of autoimmune antibodies in body fluid-the case of bullous pemphigoid. Anal Chem, 2014. 86(9): p. 4605-10.
    33. Ocallaghan, J.P., QUANTIFICATION OF GLIAL FIBRILLARY ACIDIC PROTEIN - COMPARISON OF SLOT-IMMUNOBINDING ASSAYS WITH A NOVEL SANDWICH ELISA. Neurotoxicology and Teratology, 1991. 13(3): p. 275-281.
    34. Hurley, I.P., et al., Measurement of bovine IgG by indirect competitive ELISA as a means of detecting milk adulteration. Journal of Dairy Science, 2004. 87(3): p. 543-549.
    35. Hassan, R., et al., MASTITIS CAUSING PATHOGENS WITHIN THE ENVIRONMENT AND TEATS OF MILKING COWS IN ZARIA, KADUNA STATE. Journal of animal production research, 2016. 28: p. 8-13.
    36. Schukken, Y.H., et al., Monitoring udder health and milk quality using somatic cell counts. Veterinary Research, 2003. 34(5): p. 579-596.
    37. Vilas Boas, D.F., et al., Association between electrical conductivity and milk production traits in Dairy Gyr cows. Journal of Applied Animal Research, 2016. 45(1): p. 227-233.
    38. Koczula, K.M. and A. Gallotta, Lateral flow assays. Essays in biochemistry, 2016. 60(1): p. 111-120.
    39. Henderson, K. and J. Stewart, Factors influencing the measurement of oestrone sulphate by dipstick particle capture immunoassay. Journal of immunological methods, 2002. 270(1): p. 77-84.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE