| 研究生: |
林宜蓁 Lin, Yi-Chen |
|---|---|
| 論文名稱: |
以斑馬魚幼魚的戊四唑誘發癲癇模式探尋具有抗癲癇作用的益生菌和其作用機制 Searching for the Probiotics for Anti-Seizure Effect and Mechanistic Insights Using a Zebrafish Larvae PTZ-induced Seizure Model |
| 指導教授: |
傅子芳
Fu, Tzu-Fun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 益生菌 、腦腸軸 、癲癇 、斑馬魚 、副生元 、完整的細胞壁 、高脂飲食飼餵 、磷酸吡哆醛 |
| 外文關鍵詞: | probiotics, gut-brain axis, epilepsy, zebrafish, parabiotics, intact cell wall, high-fat diet feeding, pyridoxal 5’-phosphate, seizure |
| 相關次數: | 點閱:2 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
益生菌在調節腦腸軸和影響神經功能的能力正日益受到重視。癲癇通常採用抗癲癇藥物(ASMs)治療,但許多患者對ASMs具有抗藥性或出現不良反應,這使得尋找更安全治療方案的必要性提升。本研究利用斑馬魚幼魚來篩選的抗癲癇作用益生菌。我們建立了一套標準化的實驗模型,明確了菌株劑量、餵食方案和幼魚發育階段。使用戊四唑(PTZ)誘導幼魚出現癲癇狀態,並即時分析幼魚的癲癇游泳行為。在測試的22株益生菌及其熱處理後的副生元中,有13株菌株顯著降低了PTZ誘導的癲癇發作。我們選擇BBM002及其熱處理形式(BBM002 HT)進行機制研究。在我們的研究發現,BBM002的完整的細胞壁(ICW)是介導抗癲癇作用的關鍵結構成分。在營養調控實驗中,高脂飲食會減弱益生菌的功效,而誘導性葉酸缺乏則會消除其對癲癇的抑製作用。相反,補充維生素B6的活性形式-磷酸吡哆醛(PLP)可增強BBM002和BBM002 HT的抗癲癇作用。這些發現支持BBM002和BBM002 HT有望成為控制癲癇的輔助治療方案,並證實飲食和代謝狀態對益生菌介導的抗癲癇作用具有調控能力。本研究可進一步去深入探討益生菌與營養物質在腦腸軸上的相互作用機制,並可支持發展腸道菌叢為主的癲癇治療策略。
Probiotics are increasingly recognized for their ability to modulate the gut–brain axis and influence neurological function. Epilepsy is commonly treated with anti-seizure medications (ASMs); however, many patients remain drug-resistant or experience adverse effects, underscoring the need for safer therapeutic alternatives. In this study, zebrafish larvae were used to screen probiotics for anti-seizure effect. A standardized protocol was established defining strain dosage, feeding schedule, and larval developmental stages. Seizure-like activity was induced by pentylenetetrazol (PTZ), and larval swimming behavior was analyzed in real time. Among the 22 probiotic and heat-treated parabiotic strains tested, 13 significantly reduced PTZ-induced seizures. BBM002 and its heat-treated form (BBM002 HT) were selected for mechanistic studies. The intact cell wall was identified as the critical structural component mediating anti-seizure effects. Nutritional modulation revealed that high-fat diet feeding attenuated probiotic efficacy, while inducible folate deficiency abolished seizure suppression. In contrast, supplementation with pyridoxal 5’-phosphate (PLP), the active form of vitamin B6, enhanced the anti-seizure effect of BBM002 HT. These findings identify BBM002 and BBM002 HT as promising adjunctive treatment for seizure control and demonstrate that dietary and metabolic states regulate probiotic-mediated anti-seizure effects. This study provides mechanistic insights into probiotic–nutrient interactions along the gut–brain axis and supports the development of microbiota-based therapeutic strategies for seizure.
1. Neligan A., Hauser W.A. and Sander J.W., The epidemiology of the epilepsies. Handbook of Clinical Neurology, 2012. 107: p. 113–133.
2. Beghi E., The Epidemiology of Epilepsy. Neuroepidemiology, 2020. 54(2): p. 185–191.
3. Hesdorffer D.C., et al., Is a first acute symptomatic seizure epilepsy? Mortality and risk for recurrent seizure. Epilepsia, 2009 May. 50(5): p. 1102–1108.
4. Beghi E., et al., Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010 Apr. 51(4): p. 671–675.
5. Fisher R.S., et al., ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 2014 Apr. 55(4): p. 475–482.
6. Scharfman H.E., The neurobiology of epilepsy. Current Neurology and Neuroscience Reports, 2007. 7: p. 348–354.
7. Perucca E., et al., Drug resistance in epilepsy. The Lancet Neurology, 2023 Aug. 22(8): p. 723-734.
8. Bartolini E., et al., Drug-resistant epilepsy at the age extremes: Disentangling the underlying etiology. Epilepsy & Behavior, 2022 Jul. 132: p. 108739.
9. Perucca P. and Gilliam F.G., Adverse effects of antiepileptic drugs. The Lancet Neurology, 2012 Sep. 11(9): p. 792-802.
10. Dang Y.L., et al., Adverse events related to antiepileptic drugs. Epilepsy & Behavior, 2021 Feb. 115: p. 107657.
11. Li Z. and Luo X., Probiotics, Prebiotics, Synbiotics, Postbiotics, and Paraprobiotics—New Perspectives on Functional Foods and Nutraceuticals. Foods, 2025. 14(15): p. 2613.
12. Smolinska S., Popescu F.D. and Zemelka-Wiacek M., A Review of the Influence of Prebiotics, Probiotics, Synbiotics, and Postbiotics on the Human Gut Microbiome and Intestinal Integrity. Journal of Clinical Medicine, 2025 May. 14(11): p. 3673.
13. Nataraj B.H., et al., Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 2020 Aug. 19(1): p. 168.
14. Al-Habsi N., et al., Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients, 2024. 16(22): p. 3955.
15. Gómez-Eguílaz M., et al., The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Beneficial Microbes. 2018 Dec. 9(6): p. 875-881.
16. Shirzadi P., et al., The Influence of the Probiotics, Ketogenic Diets, and Gut Microbiota on Epilepsy and Epileptic Models: A Comprehensive Review. Molecular Neurobiology, 2025 Nov. 62(11): p. 14519-14543.
17. Long-Smith C., et al., Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2020. 60: p. 477-502.
18. Chen X., D'Souza R. and Hong S.T., The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Protein & Cell, 2013. 4: p. 403–414.
19. Kojima N., et al., Wall teichoic acid-dependent phagocytosis of intact cell walls of Lactiplantibacillus plantarum elicits IL-12 secretion from macrophages. Frontiers in Microbiology, 2022 Aug. 13: p. 986396.
20. Stiles M.E. and Holzapfel W.H., Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology, 1997. 36(1): p. 1-29.
21. Chapot-Chartier MP, Kulakauskas S. Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories, 2014 Aug 29. 13 (S9).
22. Schär-Zammaretti P. and Ubbink J., The Cell Wall of Lactic Acid Bacteria: Surface Constituents and Macromolecular Conformations. Biophysical Journal, 2003 Dec. 85(6): p. 4076–4092.
23. López Nadal A., et al., Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Frontiers In Immunology, 2020 Feb. 11: p. 114.
24. Orger M.B. and de Polavieja G.G., Zebrafish Behavior: Opportunities and Challenges. Annual Review of Neuroscience, 2017. 40: p. 125-147.
25. Hoo J.Y., et al., Zebrafish: A Versatile Animal Model for Fertility Research. BioMed Research International, 2016 Jul.: p. 9732780.
26. Xia H., et al., Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Molecular Medicine, 2022 Dec. 28(1): p. 161.
27. Kimmel C.B., et al., Stages of embryonic development of the zebrafish. Developmental Dynamic, 1995 Jul. 203(3): p. 253-310.
28. Howe K., et al., The zebrafish reference genome sequence and its relationship to the human genome, Nature, 2013. 496: p. 498–503.
29. Davis E.E., Frangakis S. and Katsanis N., Interpreting human genetic variation with in vivo zebrafish assays. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2014 Oct. 1842(10): p. 1960–1970.
30. Bates J.M., et al., Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Developmental Biology, 2006 Sep. 297(2): p. 374-386.
31. Ng A.N., et al., Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Developmental Biology, 2005 Oct. 286(1): p. 114-135.
32. Stephens W.Z., et al., The composition of the zebrafish intestinal microbial community varies across development. The ISME Journal, 2016 Mar. 10(3): p. 644–654.
33. Pham L.N., et al., Methods for generating and colonizing gnotobiotic zebrafish. Nature Protocols, 2008. 3: p. 1862–1875.
34. Rico E.P., et al., Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicology and Teratology, 2011 Nov. 33(6): p. 608-617.
35. Firdous S.M., et al., Behavioral neuroscience in zebrafish: unravelling the complexity of brain-behavior relationships. Naunyn-Schmiedeberg's Archives Pharmacology, 2014 Jul. 397: p. 9295–9313.
36. Lee G.H., et al., Zebrafish larvae exposed to ginkgotoxin exhibit seizure-like behavior that is relieved by pyridoxal-5'-phosphate, GABA and anti-epileptic drugs. Disease Model and Mechanisms, 2012 Nov. 5(6): p. 785-795.
37. Whyte-Fagundes P., et al., Automated detection of complex zebrafish seizure behavior at scale. Communication Biology, 2025 Jun. 8: p. 872.
38. Wang K., et al., Embryonic exposure to ethanol increases the susceptibility of larval zebrafish to chemically induced seizures. Scientific Reports, 2018 Jan. 8(1): p. 1845.
39. Turrini L., et al., Multimodal Characterization of Seizures in Zebrafish Larvae. Biomedicines, 2022 Apr. 10(5): p. 951.
40. Mayer E.A., Tillisch K. and Gupta A., Gut/brain axis and the microbiota. The Journal of Clinical Investigation, 2015. 125(3): p. 926–938.
41. Reith J. and Mayer C. Peptidoglycan turnover and recycling in Gram-positive bacteria. Applied Microbiology and Biotechnology, 2011 Oct. 92(1): p. 1-11.
42. Makarova K., et al., Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences of USA, 2006 Oct. 103(42): p. 15611-15616.
43. Latorre R., et al., Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterology & Motility, 2016 May. 28(5): p. 620-630.
44. Gribble F.M. and Reimann F., Enteroendocrine Cells: Chemosensors in the Intestinal Epithelium. Annual Review of Physiology, 2016. 78: p. 277-299.
45. Barton J.R., et al., Enteroendocrine cell regulation of the gut-brain axis. Frontiers in Neuroscience, 2023 Nov. 17: p. 1272955.
46. Kuwahara A., et al., Microbiota-gut-brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system. Biomedical Research, 2020. 41(5): p. 199-216.
47. Shokr M.M., et al., Probiotics and the Gut–Brain Axis: Emerging Therapeutic Strategies for Epilepsy and Depression Comorbidity. Foods, 2025 Aug. 14(17): p. 2926.
48. McCarroll M.N., et al., Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nature Communications, 2019 Sep. 10: p. 4078.
49. Murugesan A., et al., Serum serotonin levels in patients with epileptic seizures. Epilepsia. 2018 Jun. 59(6): p. 91-97.
50. Mathis D., B6 Vitamers. Laboratory Guide to the Methods in Biochemical Genetics, 2024 Nov.: p. 397-411.
51. Gallagher R.C., et al., Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy. Annals of Neurology, 2009 May. 65(5): p. 550-556.
52. Mastrangelo M. and Cesario S., Update on the treatment of vitamin B6 dependent epilepsies. Expert Review of Neurotherapeutics, 2019. 19(11): p. 1135–1147.
53. Plecko B., Pyridoxine and pyridoxalphosphate-dependent epilepsies. Handbook of Clinical Neurology, 2013. 113: p. 1811-1817.
54. Kaminiów K., et al., Pyridoxine-Dependent Epilepsy and Antiquitin Deficiency Resulting in Neonatal-Onset Refractory Seizures. Brain Science. 2021 Dec. 12(1): p. 65.
55. Siatka T., et al., Biological, dietetic and pharmacological properties of vitamin B9. NPJ Science of Food, 2025 Mar. 9(1): p. 30.
56. Bobrowski-Khoury N., et al., Absorption and Tissue Distribution of Folate Forms in Rats: Indications for Specific Folate Form Supplementation during Pregnancy. Nutrients, 2022 Jun. 14(12): p. 2397.
57. Palacios A.M., Feiner R.A. and Cabrera R.M., Characterization of folic acid, 5-methyltetrahydrofolate and synthetic folinic acid in the high-affinity folate transporters: impact on pregnancy and development. Reproductive and Development Medicine, 2023 Jun. 7(2): p. 102-107.
58. Kurowska K., Kobylińska M. and Antosik K., Folic acid - importance for human health and its role in COVID-19 therapy. Roczniki Panstwowego Zakladu Higieny, 2023. 74(2): p. 131-141.
59. Panda P.K., et al., Efficacy of oral folinic acid supplementation in children with autism spectrum disorder: a randomized double-blind, placebo-controlled trial. European Journal of Pediatrics, 2024 Nov. 183(11): p. 4827-4835.
60. Campillo B., Zittoun J. and de Gialluly E., Prophylaxis of folate deficiency in acutely ill patients: results of a randomized clinical trial. Intensive Care Medicine, 1988. 14(6): p. 640-645.
61. Al-Baradie R.S. and Chaudhary M.W., Diagnosis and management of cerebral folate deficiency. A form of folinic acid-responsive seizures. Neurosciences (Riyadh), 2014 Oct. 19(4): p. 312-316.
62. Kao T.T., et al., Recombinant Zebrafish γ-Glutamyl Hydrolase Exhibits Properties and Catalytic Activities Comparable with Those of Mammalian Enzyme. Drug Metabolism and Disposition. 2009 Feb. 37(2): p. 302-309.
63. Westerfield M., The Zebrafish Book: Guide for the Laboratory Use of Zebrafish (Danio rerio). University of Oregon Press, Eugene 1995.
64. Ye L., et al., High fat diet induces microbiota-dependent silencing of enteroendocrine cells. eLife, 2019 Dec. 8: p. 48479.
65. Ye L., et al., Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host & Microbe, 2020 Dec. 29(2): p. 179-196.
66. Tu H.C., et al., One crisis, diverse impacts-Tissue-specificity of folate deficiency-induced circulation defects in zebrafish larvae. PLoS One, 2017 Nov. 12(11): e0188585.
67. Wang Y., et al., Probiotics, Prebiotics, Lactoferrin, and Combination Products for Prevention of Mortality and Morbidity in Preterm Infants: A Systematic Review and Network Meta-Analysis. JAMA Pediatrics, 2023 Nov. 177(11): p. 1158-1167.
68. Chapman C.M., Gibson G.R. and Rowland I., Health benefits of probiotics: are mixtures more effective than single strains? European Journal of Nutrition, 2011 Feb. 50(1): p. 1-17.
69. Kwoji I.D., et al., Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. Biology (Basel), 2021 Apr. 10(4): p. 322.
70. Oki K., et al., Long-term colonization exceeding six years from early infancy of Bifidobacterium longum subsp. longum in human gut. BMC Microbiology, 2018 Dec. 18(1): p. 209.
71. Han S., et al., Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Frontiers in Cellular and Infection Microbiology, 2021 Mar. 11: p. 609722.
72. Kaji R., et al., Bacterial Teichoic Acids Reverse Predominant IL-12 Production Induced by Certain Lactobacillus Strains into Predominant IL-10 Production via TLR2-Dependent ERK Activation in Macrophages. The Journal of Immunology, 2010 Apr. 184(7): p. 3505-3513.
73. Xie X., et al., Polysaccharides, Next Potential Agent for the Treatment of Epilepsy? Frontier in Pharmacology, 2022 Mar. 13: p. 790136.
74. Lammers K.M., et al., Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunology and Medical Microbiology, 2003 Sep. 38(2): p. 165-172.
75. Morrell M.J., Folic Acid and Epilepsy. Epilepsy Currents, 2002 Mar. 2(2): p. 31-34.