| 研究生: |
余昌和 Yu, Chang-Ho |
|---|---|
| 論文名稱: |
錫鋅銀銲錫合金元素在焊錫過程對銅金屬反應影響之研究 Investigations of the Effect of Element in Sn-Zn-Ag Solder with the Reaction of Cu Metal during Soldering |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 介金屬化合物 、焊錫 、溶解 |
| 外文關鍵詞: | Soldering, Intermetallic Compound, Dissolution |
| 相關次數: | 點閱:70 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試以純金屬錫為主,分別添加少量的鋅及銀元素,藉以瞭解銲錫合金元素在焊錫接合過程中,對固液界面反應的影響並探討初期界面介金屬化合物的生成行為及底層銅金屬的溶解行為。
分別添加少量的鋅與銀元素於純金屬錫中,經焊錫接合反應過程後,銲錫對底層銅金屬的體積消耗率,從純金屬錫的64.2 %降至錫鋅合金的19.6 %,以及錫鋅銀合金的14.2 %。在15秒的焊錫反應後,純錫與銅金屬在界面所生成的介金屬化合物,從銅金屬到純錫依序為Cu3Sn及Cu6Sn5等相結構;而錫鋅銀銲錫與銅金屬在界面所生成的介金屬化合物,從銅金屬到錫鋅銀銲錫依序為CuZn、Cu5Zn8、Ag5Zn8及AgZn3等相結構。而此界面介金屬化合物種類的改變,也直接降低了底層銅原子經由界面介金屬化合物擴散至熔融銲錫之間的擴散性,明顯的抑制底層銅原子的擴散。銅金屬與純錫在15秒的焊錫反應過程中,在緊鄰銅金屬表面約70奈米的區域形成非晶質Cu-Sn擴散區及Cu3Sn奈米晶胞分佈的區域;銅金屬與錫鋅銀銲錫在緊鄰銅金屬表面約75奈米的區域,則形成非晶質Cu-Zn擴散區及CuZn奈米晶胞分佈的區域。在初期15秒的焊錫反應過程中,底層銅金屬在熔融銲錫中的溶解行為,隨著銲錫合金元素的添加而有所差異。銅金屬在熔融純錫中溶解行為,使得銅晶體表面呈現如梯田般的溶解型態;然而,銅金屬在熔融錫鋅銀銲錫中溶解行為,反而在銅晶體表面造成如管狀般的溶解型態。
The purpose of this research is to investigate the effect of Zn and Ag on the reaction mechanism of solid Cu/liquid solder reaction. It also investigated the formation behavior of intermetallic compound and the dissolution behavior of Cu metal.
The consumption rate of Cu, in terms of thickness reduction, was reduced from 64.2% to 19.6% and finally 14.2%, respectively, of pure Sn, Sn-Zn and Sn-Zn-Ag alloy during soldering. The intermetallic compound formed at the interface is different Cu/Sn and Cu/Sn-9Zn-1Ag reaction after 15 sec soldering. The Cu3Sn and Cu6Sn5 was formed at the interface of Cu/Sn reaction but the CuZn, Cu5Zn8, Ag5Zn8 and AgZn3 formed at the interface of Cu/Sn-9Zn-1Ag reaction. It was found that the innermost region adjacent to the Cu metal, with a thickness of less than 70nm, is consisted of an amorphous element diffusion region and then a nanocrystalline cell dispersed region. These nanocrystalline cells corresponded to CuZn for Cu/Sn-9Zn-1Ag and Cu3Sn for Cu/Sn. A zigzag dissolution model and a channel dissolution model were proposed for the dissolution of Cu, respectively, in Sn and Sn-Zn-containing solder.
1. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering R., Vol. 27, pp. 95-141, 2000.
2. International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA, 2001.
3. A. Z. Miric and A. Girusd, “Lead-free Alloys”, Soldering and Surface Mount Technology, Vol. 10, pp. 19-25, 1998.
4. J. F. Ziegler and G. R. Srinivasan, “IBM Experiments in Soft Fails in Computer Electronics”, IBM Journal of Research and Development, Vol. 40, pp. 3-18, 1996.
5. M. R. Marks, “Effect of Burn-in on Shear Strength of 63Sn-37Pb Solder Joints on an Au/Ni/Cu Substrate”, Journal of Electronic Materials, Vol. 31, pp.265-271, 2002.
6. J. G. Lee and K. N. Subramanian, “Effect of Dwell Times on Thermomechanical Fatigue Behavior of Sn-Ag–Based Solder Joints”, Journal of Electronic Materials, Vol. 32, pp.523-530, 2003.
7. S. H. Kim, J. Y. Kim and T. Y. Lee, “Residual Stress and Interfacial Reaction of the Electroplated Ni-Cu Alloy Under Bump Metallurgy in the Flip-Chip Solder Joint”, Journal of Electronic Materials, Vol. 33, pp.948-957, 2004.
8. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology”, Materials Science and Engineering R, Vol. 38, pp. 55-105, 2002.
9. H. K. Kim, H. K. Liou and K. N. Tu, “Three-dimensional Morphology of a Very Rough Interface Formed in the Soldering Reaction Between Eutectic SnPb and Cu”, Applied Physics Letters, Vol. 66, pp. 2337-2339, 1995.
10. H. K. Kim and K. N. Tu, “Rate of Consumption of Cu in Soldering Accompanied by Ripening”, Applied Physics Letters, Vol. 67, pp. 2002-2004, 1995.
11. H. K. Kim and K. N. Tu, “Kinetic Analysis of the Sodering Reaction between Eutectic SnPb Alloy and Cu Accompanied by Ripening”, Physical Review B, Vol. 53, pp. 16027-16034, 1996.
12. M. Schaefer, R. A. Fournele and J. Liang, “Theory for Intermetallic Phase Growth between Cu and Liquid Sn-Pb Solder Based on Grain Boundary Diffusion Control”, Journal of Electronic Materials, Vol. 27, pp.1167-1176, 1998.
13. A. M. Gusak and K. N. Tu, “Kinetic Theory of Flux-driven Ripening”, Physical Review B, Vol. 66, pp. 115403-115417, 2002.
14. D. Ma, W. D. Wang and S. K. Lahiri, “Scallop Formation and Dissolution of Cu-Sn Intermetallic Compound during Solder Reflow”, Journal of Applied Physics, Vol. 91, pp. 3312-3317, 2002.
15. S. Chada, W. Laub, R. A. Fournelle and D. Shangguan, “An Improved Numerical Method for Predicting Intermetallic Layer Thickness Developed during the Formation of Solder Joints on Cu Substrates”, Journal of Electronic Materials, Vol. 28, pp. 1194-1197, 1999.
16. S. W. Yoon, J. R. Soh, H. M. Lee and B. J. Lee, “Thermodynamics-aided alloy design and evaluation of Pb-free solder, SnBiInZn system”, Acta Materialia, Vol. 45, pp. 951-960, 1997.
17. B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation”, Acta Materialia, Vol. 45, pp. 1867-1874, 1997.
18. K. Suganuma, K. Niihara, T. Shoutoku and Y. Nakamura, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, Journal of Materials Research, Vol. 13, pp. 2859-2865, 1998.
19. H. K. Kim, K. N. Tu and P. A. Totta, “Ripening-assisted Asymmetric Spalling of Cu-Sn Compound Spheroids in Solder Joints on Si Wafter”, Applied Physics Letters, Vol. 67, pp. 2004-2006, 1996.
20. C. Y. Liu, K. N. Tu, T. T. Sheng, C. H. Tung, D. R. Frear and P. Elenius, “Electron Microscopy Study of Interfacial Reaction between Eutectic SnPb and Cu/Ni(V)/Al Thin Film Metallization”, Journal of Applied Physics, Vol. 87, pp. 750-754, 2000.
21. M. Li, F. Zhang, W. T. Chen, K. Zeng, K. N. Tu, H. Balkan and P. Elenius, “Interfacial Microstructure Evolution between Eutectic SnAgCu Solder and Al/Ni(V)/Cu Thin Films”, Journal of Materials Research, Vol. 17, pp. 1612-1621, 2002.
22. K. N. Tu, A. M. Gusak and M. Li, “Physics and Materials Challenges for Lead-free Solders”, Journal of Applied Physics, Vol. 93, pp. 1335-1353, 2003.
23. M. O. Alam, Y. C. Chan and K. N. Tu, “Effect of 0.5 wt% Cu Addition in Sn-3.5%Ag Solder on the Dissolution Rate of Cu Metallization”, Journal of Applied Physics, Vol. 94, pp. 7904-7909, 2003.
24. V. I. Dybkov, Growth Kinetics of Chemical Compound Layers, Cambridge International Science, Cambridge, MA, 1889.
25. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello and C. A. Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys”, Journal of Electronic Materials, Vol. 29, pp. 1122-1136, 2000.
26. M. L. Huang, T. Loeher, A. Ostmann and H. Reichl, “Role of Cu in Dissolution Kinetics of Cu Metallization in Molten Sn-based Solders”, Applied Physics Letters, Vol. 86, pp. 181908-181911, 2005.
27. K. L. Lin and C. L. Shih, “Wetting Interaction between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32, pp. 95-100, 2003.
28. H. Baker, Alloy Phase Diagrams, ASM International, Metals Handbook, Vol. 3, 1992.
29. J. Gorlich, G. Schmitz and K. N. Tu, “On the Mechanism of the Binary Cu/Sn Solder Reaction”, Applied Physics Letters, Vol. 86, pp. 053106-053109, 2005.
30. C. H. Ma and R. A. Swalin, “Interstitial Diffusion of Cu in Tin”, Acta metallurgita, Vol. 8, pp. 399-402, 1960.
31. H. Mehrer, Diffusion in Solid Metals and Alloys, Springer Berlin, 1990.
32. P. Villars, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 1997.
33. M. C. Wang and S. P. Yu, “Kinetics of Intermetallic Compound Formation at 91Sn-8.55Zn-0.45Al Lead-free solder alloy/Cu Interface”, Journal Alloys Compounds, Vol. 381, pp. 162-167, 2004.
34. T. Laurila, V. Vuorinen and J. K. Kivilahti, “Interfacial Reactions between Lead-Free Solders and Common Base Materials”, Materials Science and Engineering R., Vol. 49, pp. 1-60, 2005.
35. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Chapman & Hall, New York, 1992.
36. O. M. Magnussen and M. R. Vogt, “Dynamics of Individual Atomic Kinks during Crystal Dissolution”, Physical Review Letters, Vol. 85, pp. 357-360, 2000.
37. O. M. Magnussen, L. Zitzler, B. Gleich, M. R. Vogt and R. J. Behm, “In-situ Atomic-scale Studies of the Mechanisms and Dynamics of Metal Dissolution by High-speed STM”, Electrochimica Acta, Vol. 46, pp. 3725-3733, 2001.
38. M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Confinement of electrons to quantum corrals on a metal surface”, Science, Vol. 262, pp. 218-220, 1993.
39. Y. Hasegawa and Ph. Avouris, “Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy”, Physical Review Letters, Vol. 71, pp. 1071-1074, 1993.
40. P. Hyldgaard and M. Persson, “Substrate Mediated Long-Range Oscillatory Interaction between Adatoms: Cu/Cu(111)”, Physical Review Letters, Vol. 85, pp. 2981-2984, 2000.
41. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Ohio, 1973.
42. F. H. Huang and H. B. Huntington, “Diffusion of Sb124, Cd109, Sn113, and Zn65 in tin”, Physical Review B, Vol. 9, pp. 1479-1488, 1974.