| 研究生: |
楊凱翔 Yang, Kai-Hsiang |
|---|---|
| 論文名稱: |
多元素普魯士藍類似物之能源應用 Multi-element Prussian blue analogues for energy applications |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 普魯士藍類似物 、鈉離子電池 、析氧反應 、催化劑 |
| 外文關鍵詞: | Prussian blue analogue, Sodium-ion battery, oxygen evolution reaction, catalyst |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往,普魯士藍類似物因為結構穩定性和容許多種過渡元素置換的特性,常用作製造其他材料的前驅物,然而多元素普魯士藍類似物也能在能源應用上有出色的表現。我們利用簡單且低耗能的共沉澱法合成多元素普魯士藍類似物,並且應用於析氧反應電催化劑和鈉離子電池正極材料。在電催化劑的應用上,鎳鐵鈷普魯士藍類似物在鹼性環境下藉由多元素的協同作用展現絕佳的催化效果,僅需236 mV的過電壓即可達到10 mA/cm2的電流密度且在75小時後仍能保持穩定的催化效果。此外,普魯士藍類似物作為催化劑的相轉變也在本研究證實。
在鈉離子電池的應用上,普魯士藍類似物作為一種新興的電極材料,過去研究提出結構的缺陷和含水量對電池性能產生負面的影響。因此,我們藉由製程的改善合出具有高結晶度的多元素普魯士藍類似物,製程C的PBA具有比電容量110 mAh/g,在100 mA/g下200次充放電後仍然保有83%的比電容量保持率,且在300 mA/g的高電流密度下仍能維持84%的倍率性能。此次研究藉由結合不同元素的優勢和結構中成分的改善,製作鈉離子電池在各方面皆表現出色的正極材料。
Multi-element Prussian blue analogues perform well in many energy applications. Here, we synthesized multi-element Prussian blue analogues by a simple and low-energy co-precipitation method and applied them to oxygen evolution reaction electrocatalysts and cathode materials for sodium-ion batteries. In the application of electrocatalysts, NiFeCo-PBA exhibits excellent catalytic effects through the synergistic effect of multiple elements in an alkaline environment and only needs an overpotential of 236 mV to reach a current density of 10 mA/cm2 and keep stable catalytic ability. In addition, the phase transition of Prussian blue analogues as catalysts was also confirmed in this study. In the application of sodium-ion batteries, Prussian blue analogues are potential electrode material, and past studies have suggested that structural defects and water content have a negative impact on battery performance. Therefore, we synthesized a multi-element Prussian blue analogue with high crystallinity through the improvement of the process. The PBA of process C has a specific capacity of 110 mAh/g, which still retains 83% after 200 cycles at 100 mA/g. Moreover, 84% rate capability can still be maintained at high current density of 300 mA/g. In this study, by combining the advantages of different elements and the improvement of the composition in the structure, cathode material that outperforms in all aspects of sodium-ion battery is produced.
1. Naito, T., et al., Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide. Inorganic Chemistry Frontiers, 2021. 8(11): p. 2900-2917.
2. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
3. Stevens, D.A. and J.R. Dahn, The mechanisms of lithium and sodium insertion in carbon materials. Journal of the Electrochemical Society, 2001. 148(8): p. A803-A811.
4. Slater, M.D., et al., Sodium-Ion Batteries. Advanced Functional Materials, 2013. 23(8): p. 947-958.
5. Wu, X.Y., et al., Highly Crystallized Na2CoFe(CN)(6) with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. Acs Applied Materials & Interfaces, 2016. 8(8): p. 5393-5399.
6. Li, W.J., et al., Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small, 2019. 15(32): p. 21.
7. Hurlbutt, K., et al., Prussian Blue Analogs as Battery Materials. Joule, 2018. 2(10): p. 1950-1960.
8. Xie, B.X., et al., Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coordination Chemistry Reviews, 2022. 460: p. 21.
9. Peng, J., et al., A Dual-Insertion Type Sodium-Ion Full Cell Based on High-Quality Ternary-Metal Prussian Blue Analogs. Advanced Energy Materials, 2018. 8(11): p. 9.
10. Shen, L.X., et al., High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chemical Engineering Journal, 2020. 388: p. 9.
11. Shen, Z.L., et al., Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries. Acs Sustainable Chemistry & Engineering, 2018. 6(12): p. 16121-16129.
12. Xu, Y., et al., Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries. Advanced Energy Materials, 2019. 9(4): p. 10.
13. Song, J., et al., Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery. Journal of the American Chemical Society, 2015. 137(7): p. 2658-2664.
14. Qi, J., W. Zhang, and R. Cao, Solar-to-Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018. 8(5).
15. Peng, X., et al., Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy and Fuels, 2019. 3(2): p. 366-381.
16. Suen, N.T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.
17. McCrory, C.C.L., et al., Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2013. 135(45): p. 16977-16987.
18. Li, Z., et al., Bimetal Prussian Blue as a Continuously Variable Platform for Investigating the Composition-Activity Relationship of Phosphides-Based Electrocatalysts for Water Oxidation. ACS Applied Materials and Interfaces, 2018. 10(42): p. 35904-35910.
19. Ren, M.Q., et al., Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Catalysts. Acs Applied Materials & Interfaces, 2021. 13(36): p. 42715-42723.
20. Yu, Z.Y., et al., Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nature Communications, 2019. 10: p. 9.
21. Jo, S., et al., Engineering Fe(CN)(6) (3-) vacancy via free-chelating agents in Prussian blue analogues on reduced graphene oxide for efficient oxygen evolution reaction. Applied Surface Science, 2022. 574: p. 9.
22. Xue, Z.Q., et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nature Communications, 2019. 10: p. 8.
23. Zhang, H., et al., Anodic Transformation of a Core-Shell Prussian Blue Analogue to a Bifunctional Electrocatalyst for Water Splitting. Advanced Functional Materials, 2021. 31(48): p. 12.
24. Su, X.Z., et al., Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018. 140(36): p. 11286-11292.
25. Handbook of Battery Materials, 2nd Edition. Handbook of Battery Materials, 2nd Edition, ed. C. Daniel and J.O. Besenhard. 2011, Weinheim: Wiley-V C H Verlag Gmbh. 1-989.
26. Ling, C., J.J. Chen, and F. Mizuno, First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius. Journal of Physical Chemistry C, 2013. 117(41): p. 21158-21165.
27. Zhou, A., et al., Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries. Advanced Energy Materials, 2021. 11(2).
28. Huang, T., et al., A Prussian blue analogue as a long-life cathode for liquid-state and solid-state sodium-ion batteries. Inorganic Chemistry Frontiers, 2020. 7(20): p. 3938-3944.
29. You, Y., et al., A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013. 1(45): p. 14061-14065.
30. Yu, S., et al., A promising cathode material of sodium iron-nickel hexacyanoferrate for sodium ion batteries. Journal of Power Sources, 2015. 275: p. 45-49.
31. Liu, Z., W. Zhang, and Y. Jiang. Synthesis of Na2Mn0.8Fe0.2Fe(CN)6 and its application as cathode material of sodium ion battery. in 2020 5th International Conference on Renewable Energy and Environmental Protection, ICREEP 2020, October 23, 2020 - October 25, 2020. 2021. Shenzhen, Virtual, China: IOP Publishing Ltd.
32. Huang, Y., et al., A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy, 2017. 39: p. 273-283.
33. You, Y., et al., High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy & Environmental Science, 2014. 7(5): p. 1643-1647.
34. Liu, Y., et al., Sodium storage in Na-rich NaxFeFe (CN)(6) nanocubes. Nano Energy, 2015. 12: p. 386-393.
35. You, Y., et al., Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015. 8(1): p. 117-128.
36. Song, J., et al., Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. Journal of the American Chemical Society, 2015. 137(7): p. 2658-2664.
37. Wang, W.L., et al., Effect of Eliminating Water in Prussian Blue Cathode for Sodium-Ion Batteries. Advanced Functional Materials: p. 13.
38. Perez-Cappe, E., et al., Cation mobility in a series of zeolite-like coordination polymers. Microporous and Mesoporous Materials, 2012. 163: p. 326-333.
39. Shang, Y., et al., Unconventional Mn Vacancies in Mn-Fe Prussian Blue Analogs: Suppressing Jahn-Teller Distortion for Ultrastable Sodium Storage. Chem, 2020. 6(7): p. 1804-1818.
40. Xie, B.X., et al., Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy, 2019. 61: p. 201-210.
41. Kang, Y., et al., Fe(CN)(6) vacancy-boosting oxygen evolution activity of Co-based Prussian blue analogues for hybrid sodium-air battery. Materials Today Energy, 2021. 20: p. 10.
42. Zou, H.J., et al., Constructing highly active Co sites in Prussian blue analogues for boosting electrocatalytic water oxidation. Chemical Communications, 2021. 57(65): p. 8011-8014.
43. Chen, Z.L., et al., Ultrathin Prussian blue analogue nanosheet arrays with open bimetal centers for efficient overall water splitting. Nano Energy, 2020. 68: p. 10.
44. Feng, Y.Q., et al., Boosting the activity of Prussian-blue analogue as efficient electrocatalyst for water and urea oxidation. Scientific Reports, 2019. 9: p. 11.
45. Wang, Z., et al., Regulation of ferric iron vacancy for Prussian blue analogue cathode to realize high-performance potassium ion storage. Nano Energy, 2022. 98.
46. Wu, Q.F., et al., Facile synthesis and optical properties of Prussian Blue microcubes and hollow Fe2O3 microboxes. Materials Science in Semiconductor Processing, 2015. 30: p. 476-481.
47. Ma, Y.J., et al., High-Entropy Metal-Organic Frameworks for Highly Reversible Sodium Storage. Advanced Materials, 2021. 33(34): p. 10.
48. Carvalho, C.L.C., et al., Development of Co3[Co(CN)6]2/Fe3O4 Bifunctional Nanocomposite for Clinical Sensor Applications. ACS Applied Nano Materials, 2018. 1(8): p. 4283-4293.
49. Feng, Y.F., et al., An efficient and stable Ni-Fe selenides/nitrogen-doped carbon nanotubes in situ-derived electrocatalyst for oxygen evolution reaction. Journal of Materials Science, 2020. 55(28): p. 13927-13937.
50. Xiong, P., et al., Prussian blue analogues Mn[Fe(CN)6]0.6667nH2O cubes as an anode material for lithium-ion batteries. Dalton Transactions, 2015. 44(38): p. 16746-16751.
51. Nai, J.W., J.T. Zhang, and X.W. Lou, Construction of Single-Crystalline Prussian Blue Analog Hollow Nanostructures with Tailorable Topologies. Chem, 2018. 4(8): p. 1967-1982.
52. Zeng, Y.H., et al., Confined heat treatment of a Prussian blue analogue for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018. 6(33): p. 15942-15946.
53. Wang, W.H., et al., Mass-Production of Mesoporous MnCo2O4 Spinels with Manganese(IV)- and Cobalt(II)-Rich Surfaces for Superior Bifunctional Oxygen Electrocatalysis. Angewandte Chemie-International Edition, 2017. 56(47): p. 14977-14981.
54. Du, Q.G., et al., Construction of N and Fe co-doped CoO/CoxN interface for excellent OER performance. Sustainable Materials and Technologies, 2021. 29: p. 8.
55. Cai, Z., et al., Introducing Fe2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie-International Edition, 2018. 57(30): p. 9392-9396.
56. Meng, X.Y., et al., Fe2+-Doped Layered Double (Ni, Fe) Hydroxides as Efficient Electrocatalysts for Water Splitting and Self-Powered Electrochemical Systems. Small, 2019. 15(41): p. 10.
57. Xing, J.L., et al., In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation. Chemical Communications, 2018. 54(51): p. 7046-7049.
58. Guo, P., et al., Initiating an efficient electrocatalyst for water splitting via valence configuration of cobalt-iron oxide. Applied Catalysis B-Environmental, 2019. 258: p. 8.
59. Hsu, S.H., et al., Tuning the Electronic Spin State of Catalysts by Strain Control for Highly Efficient Water Electrolysis. Small Methods, 2018. 2(5): p. 5.
60. Wang, Z.J., et al., Contemporaneous inverse manipulation of the valence configuration to preferred Co2+ and Ni3+ for enhanced overall water electrocatalysis. Applied Catalysis B-Environmental, 2021. 284: p. 10.
61. Sun, J., et al., Surface Co3+-rich engineering of Co(SxSe1-x)(2) nanocrystals coated with ultrathin carbon layer for e fficient OER/HER. Applied Surface Science, 2020. 517: p. 6.
62. Han, M., et al., Promoted self-construction of -NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction. Applied Catalysis B: Environmental, 2022. 301.
63. Zhang, L., W. Cai, and N. Bao, Top-Level Design Strategy to Construct an Advanced High-Entropy CoCuFeMo (Oxy)Hydroxide Electrocatalyst for the Oxygen Evolution Reaction. Advanced Materials, 2021. 33(22).
64. Jo, S., et al., Engineering [Fe(CN)6]3− vacancy via free-chelating agents in Prussian blue analogues on reduced graphene oxide for efficient oxygen evolution reaction. Applied Surface Science, 2022. 574.
65. Bi, Y.M., et al., Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. Journal of Catalysis, 2018. 358: p. 100-107.
66. Zhou, T.T., et al., Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays. Scientific Reports, 2017. 7: p. 9.
67. Allahdin, O., et al., Performance of FeOOH-brick based composite for Fe(II) removal from water in fixed bed column and mechanistic aspects. Chemical Engineering Research & Design, 2013. 91(12): p. 2732-2742.
68. Fan, J.Y., et al., Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation. Rsc Advances, 2018. 8(13): p. 7269-7279.
69. Huang, Y.X., et al., A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy, 2017. 39: p. 273-283.
70. Ojwang, D.O., et al., Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate. Inorganic Chemistry, 2016. 55(12): p. 5924-5934.
71. Ojwang, D.O., et al., Moisture-Driven Degradation Pathways in Prussian White Cathode Material for Sodium-Ion Batteries. Acs Applied Materials & Interfaces, 2021. 13(8): p. 10054-10063.
72. Lee, S., et al., Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Angewandte Chemie - International Edition, 2019. 58(30): p. 10295-10299.
73. Qiu, Z., Y. Ma, and T. Edvinsson, In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting. Nano Energy, 2019. 66.
74. Wang, X., et al., Surfactant-Mediated Morphological Evolution of MnCo Prussian Blue Structures. Small, 2020. 16(43): p. 9.
75. Fukaya, R., et al. Raman study of the charge transferred metastable state leading to the photoinduced magnetic phase transition in rubidium manganese hexacyanoferrate. in 2008 International Conference on Luminescence and Optical Spectroscopy of Condensed Matter, ICL'08, July 7, 2008 - July 11, 2008. 2009. Lyon, France: Elsevier B.V.
76. Wang, Q.Q., et al., Synthesis of CoFe Prussian blue analogue/carbon nanotube composite material and its application in the catalytic epoxidation of styrene. New Journal of Chemistry, 2016. 40(4): p. 3244-3251.
77. Gao, B.H., et al., A study of FTIR and XPS analysis of alkaline-based cleaning agent for removing Cu-BTA residue on Cu wafer. Surface and Interface Analysis, 2019. 51(5): p. 566-575.
78. Bie, X., et al., Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. Journal of Power Sources, 2018. 378: p. 322-330.
校內:2027-08-26公開