簡易檢索 / 詳目顯示

研究生: 李郁婷
Lee, Yu-Ting
論文名稱: 高分子介電薄膜之黏彈性行為量測與本構模型建立
Characterization of Viscoelastic Behavior and Development of Constitutive Model of Polymer Dielectric Thin Film
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: 介電薄膜線黏彈本構模型
外文關鍵詞: polymer dielectric thin film, constitutive model
相關次數: 點閱:109下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先進電子封裝設計中,由於晶圓級封裝具有尺寸及電性上的優勢而成為手持式電子產品中主要零件之一,而擴散型晶圓級封裝因擁有特殊之重新佈線(redistribution)與凸塊(bumping)的製程且擁有不需要底膠保護之特性,具有高度系統整合及重工性而受到重視,高分子介電材料在擴散級晶圓級封裝製程中扮演著重要的腳色,當整體結構設計不良時,晶圓級封裝將會因為晶片與基板間的熱膨脹量之不匹配而導致破壞,進而造成元件的失效,因此,連接矽晶片和銅墊片之介電材料,除了用來絕緣外,還具有應力隔絕的作用,在晶圓級封裝中,由於少了底膠的保護,介電保護層的厚度更能使互聯系統的可靠度上升,增加疲勞壽命。
    為了正確模擬材料行為並預測可靠度,本文利用25°C至175°C之潛變實驗來量測介電薄膜之線黏彈行為,並使用時間-溫度重疊原理(time-temperature superposition principle)來建構材料之本構模型;經由時間-溫度重疊原理可得到材料在長時間下之主曲線,並使用9級之Prony級數來進行曲線擬合與參數求得;最後利用此模型進行實驗結果之比對與模擬,驗證結果顯示,此模型可良好地預測介電薄膜在不超過200°C時之線黏彈行為,可用來此推測薄膜在封裝過程中反覆升溫降溫時的反應。

    The fan-out wafer level package (WLP) is one of the focus areas in packaging research for handheld electronic applications due to its advantages in body size, electrical performance and system integration capability. The fan-out WLP is constructed by molding single or multiple silicon chips in one package, and forming the electrical interconnection between dies and the motherboard-connecting solder balls by using redistribution copper traces sandwiched in polymer dielectric thin film layers. The polymer dielectric material plays an important role in the package reliability in the way of providing stress buffering to the solder bump structure. In order to accurately assess the reliability of various WLP designs, it is critical to characterize the constitutive behavior of the polymer dielectric thin film and apply it in the stress and reliability modeling.
    In this study, creep experiments at uniform temperatures between 25°C and 175°C were performed to characterize the viscoelastic behavior of the polymer dielectric of interest. From the experimental results it is observed that the polymer dielectric material exhibits linear viscoelastic behavior under strain level lower than 3%. A Prony series is developed to model the viscoelastic behavior of the dielectric material. Estimations of the dielectric material responses under creep and additional loading profiles were obtained by directly integrating the stress-strain convolution integral and by numerical finite element simulations, and were compared to experimental data for model validation. The comparison showed that the predictions by using the Prony series based linear viscoelastic model agrees well to the experimental data.

    目錄 摘要 I 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1.1 背景介紹 1 1.2 研究動機與方向 3 1.3 文獻回顧 4 1.4 本文架構 6 第二章 理論基礎 8 2.1 7高分子材料之黏彈性行為 8 2.2 時間相關之行為及基本材料測試 8 2.3 線黏彈行為之判定 11 2.4 線黏彈性材料之基本數學模型 12 2.5 時間-溫度重疊原理 17 第三章 實驗內容 20 3.1 高分子材料試件 20 3.1.1 試件備製 20 3.1.2 實驗試片的備製 21 3.2 拉伸實驗 24 3.3 潛變實驗 26 3.4 非單一負載實驗 32 第四章 介電薄膜本構模型的建立 36 4.1 線黏彈性本構模型的建立 36 4.2 本構模型之參數擬合 42 4.3 潛變實驗模擬 48 4.4 有限元素模擬與驗證 51 4.5 非單一負載驗證 55 4.6比較與討論 58 第五章 結果與未來研究 60 5.1 5.1 結論 60 5.2 5.2 未來研究方向 61 參考文獻 62

    [1] TSSOP Data Sheet, Amkor Inc., Korea, 2001. http://www.amkor.com/images
    /tssop_xsection.jpg
    [2] PBGA Data Sheet, Amkor Inc., Korea, 2011. http://www.amkor.com/images
    /products/pbga-cross.gif
    [3] fcCSP Data Sheet, Amkor Inc., Korea, 2010. http://www.amkor.com/images
    /products/fccsp_xsection.jpg
    [4] R. Plieninger, “Challenges and new solutions for high integration IC packaging,” Keynote presentation 6, ESTC, Dresden, Germany, September, 2006. http://141.30.122.65/Keynotes/6-Plieninger-ESTC_Keynote_20060907
    .pdf
    [5] C. Marais and G. Villoutreix, “Analysis and modeling of the creep behavior of the thermostable PMR-15 ploymide,” Journal of Applied Polymer Science, vol. 69, 1983-1991, 1998.
    [6] J. L. Yang, Z. Zhang, A. K. Schlarb and K. Friedrich, “On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I: Experimental results and general discussions,” Polymer, vol. 47, pp. 2791-2801, 2006.
    [7] J. L. Yang, Z. Zhang, A. K. Schlarb and K. Friedrich, “On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance,” Polymer, vol. 47, pp. 6745-6758, 2006.
    [8] Z. D. Wang and X. X. Zhao, “Modeling and characterization of viscoelasticity of PI/SiO2 nanocomposite films under constant and fatigue loading,” Materials Science and Engineering A, vol. 486, pp. 517-527, 2008.
    [9] S. Muller, Markus Kastner, J Brummund and V Ulbricht, “A nonlinear fractional viscoelastic material for polymers,” Computational Materials Science, vol. 50, pp. 2938-2949, 2011.
    [10] A Krupicka, M. Johansson and A. Hult, “Viscoelasticity in polymer films on rigid substrates,” Macromolecular Materials and Engineering, vol. 208, pp. 108-116, 2003.
    [11] D. Lai, I. Yakimets and M. Guigon, “A non-linear viscoelastic model developed for semi crystalline polymer deformed at small strain with loading and unloading paths,” Materials Science Engineering, vol. 405, pp. 266-271, 2005.
    [12] G. Bles, W. K. Nowacki and A. Tourabi, “Experimental study of the cyclic visco elasto plastic behavior of a polyamide fiber strap,” International Journal of Solids and Structures, vol. 46, pp. 2693-2705, 2009.
    [13] M. J. Mindel and N. Brown, “The relationship of creep, recovery and fatigue in polycarbonate,” Journal of Materials Science, vol. 9, pp. 1661-1669, 1974.
    [14] G. Spathis and E. Kontou, “Nonlinear viscoelastic and viscoplastic response o glassy polymers,” Polymer Engineering and Science, vol. 41, pp. 1337-1344, 2001.
    [15] G. Spathis and E. Kontou, “Nonlinear viscoelastic model for the prediction of double yielding in a linear low-density polyethylene film,” Journal of Applied Polymer Science,” vol. 91, pp. 3519-3527, 2004.
    [16] E. Kontou, “Tensile creep behavior of unidirectional glass-fiber polymer composites,” Society of Plastics Engineers, vol. 26, pp. 287-292, 2005.
    [17] E. Kontou, “Effect of thermal treatments on the Yielding of polycarbonate,” Journal of Applied Polymer Science, vol. 98, pp.796-805, 2005.
    [18] M. Hamid Reza Ghoreishy, “Determination of the parameters of the prony series in hyper viscoelastic material models using the finite element method,” Materials and Design, vol. 35, pp. 791-797, 2012.
    [19] J. S. Kim and A. H. Muliana, “A time integration method for the viscoelastic-viscoplastic analyses polymers and finite element implementation,” International Journal for Numerical Methods in Engineering, vol. 79, pp. 550-575, 2009.
    [20] O. Starkova, A. Aniskevich, “Application of time-temperature superposition to energy limit of linear viscoelastic behavior,” Journal of Applied Polymer Science, vol. 114, pp. 341-347, 2009.
    [21] Y. L. Chan and A. H. W. Ngan, “Invariant elastic modulus of viscoelastic materials measured by rate-jump tests,” Polymer Testing, vol. 29, pp. 558-564, 2010.
    [22] H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity An Introduction.
    [23] R. C. Dunne, An Intergrated Process Modeling Methodology and Module for Sequential Multilayered High-Density Substrate Fabrication for Microelectronic Packages, Ph. D. Dissertation, Georgia Technology Institute, 2000.
    [24] J. D. Ferry, Viscoelastic Properties of Polymer, 3rd edition, John Wiley and Sons Inc., New York, 1980.
    [25] ASTM D882, “Standard test method for tensile properties of thin plastic sheeting,” West Conshohocken, 2010.
    [26] ASTM D1708-10, “Standard test method for tensile properties of plastics by use of microtensile specimens,”West Conshohocken, 2012.
    [27] Maple, Waterloo, ON, Canada: Maplesoft, 2010.
    [28] ANSYS, ver. 11.0, ANSYS Inc., 2007.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE