| 研究生: |
黃建維 Huang, Jian-Wei |
|---|---|
| 論文名稱: |
鎵基液態金屬與銅鎳的潤濕性質 The Wetting Properties of Gallium-based Liquid Metal with Copper and Nickel |
| 指導教授: |
林士剛
Lin, Shih-kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
智慧半導體及永續製造學院 - 半導體封測學位學程 Program on Semiconductor Packaging and Testing |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 鎵基液態金屬 、潤濕性 、銅 、鎳 、甲酸蒸氣 、介金屬化合物 、酸性助焊劑 、電子封裝技術 |
| 外文關鍵詞: | gallium-based liquid metals, wettability, copper, nickel, formic acid vapor, intermetallic compounds, acidic fluxes, electronic packaging technologies |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Lee, Y.-G., . cInerney, Y.-C. Joo, I.-S. Choi, and S.E. Kim, Copper bonding technology in heterogeneous integration. Electronic aterials Letters, 2024. 20(1): p. 1-25.
2. Froemel, J., . Baum, . Wiemer, and T. Gessner, Low-temperature wafer bonding using solid-liquid inter-diffusion mechanism. Journal of icroelectromechanical Systems, 2015. 24(6): p. 1973-1980.
3. Tu, K.-N., H.-Y. Hsiao, and C. Chen, Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy. icroelectronics Reliability, 2013. 53(1): p. 2-6.
4. Zaimi, N., .A.A. ohd Salleh, A. Al Bakri, R. . Said, and N. Saud, Influence of non-metallic particles addition on wettability, intermetallic compound formation and microhardness of Sn-0.7 Cu lead free solder paste, in Solid State Phenomena. 2018, Trans Tech Publ. p. 169-174.
5. Kim, S.Y., .I. Kim, and J.-H. Lee, Pressure-assisted sinter-bonding characteristics at 250° C in air using bimodal Ag-coated Cu particles. Electronic aterials Letters, 2020. 16: p. 293-298.
6. Liu, Z., J. Cai, Q. Wang, Z. Wang, L. Liu, and G. Zou, Thermal-stable void-free interface morphology and bonding mechanism of low-temperature Cu-Cu bonding using Ag nanostructure as intermediate. Journal of Alloys and Compounds, 2018. 767: p. 575-582.
7. Yoon, S.W., J.H. Ku, N. Suthiwongsunthorn, P.C. arimuthu, and F. Carson, Fabrication and packaging of microbump interconnections for 3D TSV, in 2009 IEEE International Conference on 3D System Integration. 2009, IEEE. p. 1-5.
8. Lin, S.-k., H.-m. Chang, C.-l. Cho, Y.-c. Liu, and Y.-k. Kuo, Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits. Electronic aterials Letters, 2015. 11: p. 687-694.
9. Lin, S.-k., .-j. Wang, C.-y. Yeh, H.-m. Chang, and Y.-c. Liu, High-strength and thermal stable Cu-to-Cu joint fabricated with transient molten Ga and Ni under-bump-metallurgy. Journal of Alloys and Compounds, 2017. 702: p. 561-567.
10. Panigrahi, A.K., T. Ghosh, C.H. Kumar, S.G. Singh, and S.R.K. Vanjari, Direct, CMOS in-line process flow compatible, sub 100 C Cu–Cu thermocompression bonding using stress engineering. Electronic aterials Letters, 2018. 14: p. 328-335.
11. Seo, H., H. Park, and S.E. Kim, Comprehensive analysis of a Cu nitride passivated surface that enhances Cu-to-Cu bonding. IEEE Transactions on Components, Packaging and anufacturing Technology, 2020. 10(11): p. 1814-1820.
12. cCauley, R.A., Corrosion of ceramic and composite materials. 2004: CRC Press.
13. ku, T., A. Takeda, A. Nagata, H. Kidowaki, K. Kumada, K. Fujimoto, A. Suzuki, T. Akiyama, Y. Yamasaki, and E. Ōsawa, Microstructures and photovoltaic properties of C60 based solar cells with copper oxides, CuInS2, phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton diffusion blocking layers. aterials Technology, 2013. 28(1-2): p. 21-39.
14. Singh, S.P., Light harvesting nanomaterials. 2015: Bentham Science Publishers.
15. Swain, B., C. ishra, L. Kang, K.-S. Park, C.G. Lee, and H.S. Hong, Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching. 2014: p. 401-408.
16. Yamagiwa, D., T. atsuda, H. Furusawa, K. Sato, H. Tatsumi, T. Sano, Y. Kashiba, and A. Hirose, Pressureless sinter joining of bare Cu substrates under forming gas atmosphere by surface-oxidized submicron Cu particles. Journal of aterials Science: aterials in Electronics, 2021. 32(14): p. 19031-19041.
17. thman, N., N. thman, J. Zhang, and D. Young, Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres. Corrosion Science, 2009. 51(12): p. 3039-3049.
18. Fujino, ., . Akaike, N. atsuoka, and T. Suga, Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid. Japanese Journal of Applied Physics, 2017. 56(4S): p. 04CC01.
19. Lin, W. and Y. Lee, Study of fluxless soldering using formic acid vapor. IEEE transactions on Advanced Packaging, 1999. 22(4): p. 592-601.
20. onta, ., K. kiyama, T. Sakai, and N. Imaizumi, Formation of solder cap on Cu pillar bump using formic acid reduction, in 2012 IEEE 14th Electronics Packaging Technology Conference (EPTC). 2012. p. 602-607.
21. He, S., R. Gao, J. Li, Y.-A. Shen, and H. Nishikawa, In-situ observation of fluxless soldering of Sn-3.0 Ag-0.5 Cu/Cu under a formic acid atmosphere. aterials Chemistry and Physics, 2020. 239: p. 122309.
22. zawa, N., T. kubo, J. atsuda, and T. Sakai, Observation and analysis of metal oxide reduction by formic acid for soldering, in 2016 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2016, IEEE. p. 148-151.
23. Chung, C.K., Y. Chen, C. Li, and C. Kao, The critical oxide thickness for Pb-free reflow soldering on Cu substrate. Thin Solid Films, 2012. 520(16): p. 5346-5352.
24. Chou, P.-W., J.- . Song, Z.-Y. Xie, . Akaike, T. Suga, . Fujino, and J.-Y. Lin, Low temperature de-oxidation for copper surface by catalyzed formic acid vapor. Applied Surface Science, 2018. 456: p. 890-898.
25. Yang, W., Y. Lu, C. Zhou, J. Zhang, and T. Suga, Study of Cu film surface treatment using formic acid vapor/solution for low temperature bonding. Journal of The Electrochemical Society, 2017. 165(4): p. H3080.
26. Smith, B.A. and L.J. Turbini, Characterizing the weak organic acids used in low solids fluxes. Journal of Electronic aterials, 1999. 28: p. 1299-1306.
27. Li, F., .S. Jellesen, and R. Ambat, Comparative study of tripropylamine and naphthylamine as additives in wave solder flux: investigation of solderability and corrosion effects. Journal of aterials Science: aterials in Electronics, 2022. 33(13): p. 10234-10250.
28. Porter, . ., R. Imperio, . Wen, .A. eyers, and J. cKittrick, Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional aterials, 2014. 24(14): p. 1978-1987.
29. Celante, V. and . Freitas, Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques. Journal of applied electrochemistry, 2010. 40: p. 233-239.
30. Ciesielczyk, F., P. Bartczak, K. Wieszczycka, K. Siwińska-Stefańska, . Nowacka, and T. Jesionowski, Adsorption of Ni (II) from model solutions using co-precipitated inorganic oxides. Adsorption, 2013. 19: p. 423-434.
31. Chung, Y. and C.-W. Lee, Electrochemistry of gallium. Journal of Electrochemical Science and Technology, 2013. 4(1): p. 1-18.
32. Chen, Y., C. Liu, Z. Zhou, and C. Liu, Transient liquid phase bonding with Ga-based alloys for electronics interconnections. Journal of anufacturing Processes, 2022. 84: p. 1310-1319.
33. Chen, Y., H. Jiang, Z. Zhou, and C. Liu, Interfacial Intermetallic Compounds Growth Kinetics and Mechanical Characteristics of Ga-Cu Interconnects Prepared via Transient Liquid Phase Bonding. aterials Today Communications, 2024: p. 108401.
34. Hasouna, A.T., K. Nogi, and K. gino, Effects of temperature and atmosphere on the wettability of solid copper by liquid tin. Transactions of the Japan institute of metals, 1988. 29(9): p. 748-755.
35. Eustathopoulos, N., N. Sobczak, A. Passerone, and K. Nogi, Measurement of contact angle and work of adhesion at high temperature. Journal of aterials Science, 2005. 40: p. 2271-2280.
36. Eom, Y.-S., K.-S. Jang, J.-T. oon, and J.-D. Nam, Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder. ETRI Journal, 2010. 32(3): p. 414-421.
37. Ismail, N., R. Ismail, A. Jalar, G. mar, E. . Salleh, N. Kamil, and I.A. Rahman, Comparative study of interfacial interaction between aromatic and aliphatic functional group in solder wettability. Journal of aterials Science: aterials in Electronics, 2018. 29: p. 12910-12916.
38. Sarafraz, . and . Arjomandi, Contact angle and heat transfer characteristics of a gravity-driven film flow of a particulate liquid metal on smooth and rough surfaces. Applied Thermal Engineering, 2019. 149: p. 602-612.
39. Binh, D.N., Contact Angle of Sn-8Zn-3Bi Lead-free Solder Alloy on Copper Substrate. Journal of Science and Technology, 2020. 146: p. 49-53.
40. Saito, J.-i., Y. Kobayashi, and H. Shibutani, Wettability of pure metals with liquid sodium and liquid tin. aterials transactions, 2021. 62(10): p. 1524-1532.
41. Vianco, P.T., F. . Hosking, and J.A. Rejent, Solderability testing of Kovar with 60Sn40Pb solder and organic fluxes. 1990, Sandia National Lab.(SNL-N ), Albu uer ue, N (United States).
42. Kawakatsu, I. and T. sawa, Wettability of liquid tin on solid copper. Transactions of the Japan Institute of etals, 1973. 14(2): p. 114-119.
43. Somlyai-Sipos, L. and P. Baumli, Effect of nickel addition on the wettability and reactivity of tin on copper substrate. Resolution and Discovery, 2017. 2(1): p. 9-12.
44. Vianco, P.T., F. . Hosking, and J.A. Rejent, Solderability Testing of Kovar With 60Sn40Pb Solder and Organic Fluxes. 1990.
45. Lee, C.-Y.L.C.-Y. and K.-L.L.K.-L. Lin, Solderability of electroless nickel alloys using wetting balance technique. Japanese journal of applied physics, 1994. 33(8R): p. 4708.
46. EUSTATH P UL S, N., N. S BCZAK, A. PASSER NE, and K. N GI, Measurement of contact angle and work of adhesion at high temperature. 2005.
47. Jung, D.-H. and J.-P. Jung, Review of the wettability of solder with a wetting balance test for recent advanced microelectronic packaging. Critical Reviews in Solid State and aterials Sciences, 2019. 44(4): p. 324-343.
48. Lin, S.-k., C.-y. Yeh, and .-j. Wang, On the formation mechanism of solid-solution Cu-to-Cu joints in the Cu/Ni/Ga/Ni/Cu system. aterials Characterization, 2018. 137: p. 14-23.
49. Lin, S.-k., C.-l. Cho, and H.-m. Chang, Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples. Journal of electronic materials, 2014. 43: p. 204-211.
50. Schuster, J. ., C.E. Schvezov, and .R. Rosenberger, Construction and calibration of a goniometer to measure contact angles and calculate the surface free energy in solids with uncertainty analysis. International Journal of Adhesion and Adhesives, 2018. 87: p. 205-215.
51. Sarafraz, . . and . Arjomandi, Contact angle and heat transfer characteristics of a gravity-driven film flow of a particulate liquid metal on smooth and rough surfaces. 2019.
52. Huang, Y., L. Zhang, . Yan, Q. Huang, Y. Zhang, Y. Ren, and W. Luo, Measurement and Correlation for Solubilities of Adipic Acid, Glutaric Acid, and Succinic Acid in Different Alcohol Solvents. Journal of Chemical & Engineering Data, 2021. 67(1): p. 245-256.
53. Abràmoff, .D., P.J. agalhães, and S.J. Ram, Image processing with ImageJ. Biophotonics international, 2004. 11(7): p. 36-42.
校內:2029-08-22公開