| 研究生: |
林哲仲 Lin, Che-Chung |
|---|---|
| 論文名稱: |
肺癌中Kras誘導YY1/STAT3轉錄異常以促進致癌基因ZNF322A表現與癌症特性 Kras-Driven Transcription Dysregulation of YY1/STAT3 Promotes Oncogenic ZNF322A Expression and Tumorigenicity in Lung Cancer |
| 指導教授: |
王憶卿
Wang, Yi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 肺癌 、ZNF322A鋅指蛋白 、Kirsten鼠肉瘤病毒癌基因 、陰陽1 、轉錄訊息傳遞活化子3 、腫瘤血管新生 |
| 外文關鍵詞: | Lung cancer, ZNF322A, Kras, YY1, STAT3, angiogenesis |
| 相關次數: | 點閱:100 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景: 許多文獻指出,Kirsten 鼠肉瘤病毒癌基因 (Kirsten sarcoma viral oncogene, Kras) 的突變會促進癌細胞轉移及生長,並且使臨床病人產生不良預後;此外,研究也發現Kras基因突變會促進下游轉錄因子的表現。本研究室過去發現致癌性鋅指蛋白 (zinc finger protein) ZNF322A會藉由調控下游基因轉錄進而加速癌症發展。我們進一步利用基因轉殖鼠 (transgenic mice) 模式發現ZNF322A能加成由Kras誘導的肺腫瘤生成,暗示Kras也許會透過促進ZNF322表現,進而加速癌症惡化。
研究目的: 本研究旨在探討於肺癌細胞及動物模式中,Kras基因突變是否能促進ZNF322A表現以及促癌特性,並更進一步尋找由Kras誘導ZNF322A轉錄活化的可能機制。我們並以肺癌病人檢體闡明ZNF322A以及其上游調節因子的關係。
研究結果: 在基因轉殖鼠中,kras/znf322a 雙轉殖鼠較znf322a單轉殖鼠有較高的腫瘤發生率。我們利用在肺癌細胞中大量表現活化態Kras (KrasG13V),發現Kras的突變會促進ZNF322A的表現,並且進一步促進癌細胞遷移。接著我們利用冷光啟動子分析 (luciferase promoter activity)、染色質免疫沉澱-即時聚合酶連鎖反應 (ChIP-qPCR)、即時逆轉錄聚合酶連鎖反應 (qRT-PCR) 驗證在Kras突變下,陰陽1 (Ying Yang 1, YY1) 透過正向調控ZNF322A基因啟動子區域進而上調ZNF322A表現,並促進由ZNF322A介導的癌細胞遷移、癌細胞增生以及周圍人類臍帶血管內皮細胞 (human umblical vein endothelail cell, HUVEC) 的遷移。在動物實驗中,我們利用Matrigel plug angiogenesis assay發現若抑制肺癌細胞中YY1或ZNF322A表現,會減少由Kras促使之血管新生現象。以上結果證明Kras-YY1-ZNF322A路徑確實能促使腫瘤進程及腫瘤血管新生。在臨床檢體研究,我們透過免疫組織染色化學法發現ZNF322A的表現與YY1以及代表血管新生標記 CD31的表現具有正相關。另一方面,除了YY1之外,我們也發現轉錄訊息傳遞活化子3 (Signal transducer and activator of transcription 3, STAT3) 可能藉由與核因子活化B细胞輕鍊增強子-p65單元 (Nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit, NF-B p65) 合作,或是藉由調控ZNF322A 基因啟動子區域的過度甲基化,進一步降低ZNF322A的轉錄表現。
結論: 我們的研究深入探討ZNF322A上游的轉錄調控機制,並由細胞及動物實驗發現Kras/YY1藉由正向調控ZNF322A轉錄而促進癌症腫瘤特性。另外,STAT3可能藉由促進ZNF322A基因啟動子區域的過度甲基化而降低ZNF322A的表現。Kras/YY1、STAT3/ZNF322A路徑在未來也許是具有潛力的治療目標。
關鍵字:肺癌、ZNF322A鋅指蛋白、Kirsten鼠肉瘤病毒癌基因(Kirsten rat sarcoma viral oncogene)、陰陽1 (Ying Yang 1)、轉錄訊息傳遞活化子3 (Signal transducer and activator of transcription 3)、腫瘤血管新生。
Background: Accumulating evidence has revealed that mutation of Kirsten rat sarcoma viral oncogene (Kras) contributes to tumor metastasis, growth, and poor prognosis. In addition, previous studies showed that Kras mutation promoted expression of downstream transcription factors. Our previous study identified a novel zinc finger transcription factor ZNF322A, which could promote lung tumorigenesis through transcriptional dysregulation of downstream genes. Notably, our transgenic mice study demonstrated that ZNF322A synergized KrasG12D mutation-driven lung tumorigenesis, suggesting that Kras may upregulate ZNF322A expression and thus promote tumor malignancy.
Purpose: This study aims to investigate whether Kras mutation enhances ZNF322A expression and tumorigenicity, and to further dissect underlying mechanisms of Kras mutation-driven ZNF322A transcriptional activation. In addition, clinical study will elucidate the relationship between ZNF322A and its upstream transcriptional regulators.
Results: Our transgenic mice study revealed that mice harbored with KrasG12D/Znf322a possessed higher tumor initiation ability compared to those with KrasG12D single transgene. We next adapted in vitro KrasG13V inducible model and found that KrasG13V mutation promoted ZNF322A transcription, and Kras-ZNF322A axis contributed to cancer cell migration. Among Kras downstream transcription factors, we validated that Ying Yang 1 (YY1) upregulated ZNF322A expression through targeting its promoter in the context of Kras mutation by quantitative reverse transcriptase-PCR, luciferase promoter assay and chromatin immunoprecipitation-PCR. Reconstitution experiments by knocking down of YY1 under KrasG13V activation decreased KrasG13V-promoted cancer cell migration and proliferation. Furthermore, knockdown of YY1 or ZNF322A attenuated angiogenesis in vitro and in vivo by HUVEC endothelial cell migration assay and matrigel plug assay, respectively. These cell and animal data depicted the role of Kras-YY1-ZNF322A axis in lung tumorigenesis and neo-angiogenesis. In clinical patients, ZNF322A expression correlated with angiogenesis marker CD31, and YY1 also showed boarder line correlation with CD31. On the contrary, we identified that signal transducer and activator of transcription 3 (STAT3) may downregulate ZNF322A transcription by cooperating with NF-B or by enhancing ZNF322A promoter hypermethylation.
Conclusions: Our study dissects the novel upstream transcriptional regulation of ZNF322A. Kras/YY1 axis enhanced ZNF322A transcription and promoted ZNF322A tumorigenicity in vitro and in vivo, while active STAT3 attenuated ZNF322A transcription by enhancing ZNF322A promoter hypermethylation. Targeting Kras/YY1 or STAT3/ZNF322A axis may be potential for lung cancer treatment.
Key words: Lung cancer, ZNF322A, Kras, YY1, STAT3, angiogenesis.
Ahrendt SA, Hu Y, Buta M, McDermott MP, Benoit N, Yang SC Wu L, Sidransky D (2003). p53 mutations and survival in stage I non-small-cell lung cancer: results of a prospective study. J Natl Cancer Inst 95: 961-970.
Allouche A, Nolens G, Tancredi A, Delacroix L, Mardaga J, Fridman V, Winkler R, Boniver J, Delvenne P, Begon DY (2008). The combined immunodetection of AP-2alpha and YY1 transcription factors is associated with ERBB2 gene overexpression in primary breast tumors. Breast Cancer Res 10: R9.
Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA, Jove R (2001). Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A 98: 7319-7324.
Cancer Genome Atlas Research N (2014). Comprehensive molecular profiling of lung adenocarcinoma. Nature 511: 543-550.
Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR (1982). Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci U S A 79: 4848-4852.
Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK (2014). Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14: 535-546.
Cherfils J, Zeghouf M (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93: 269-309.
Corcoran RB, Contino G, Deshpande V, Tzatsos A, Conrad C, Benes CH, Levy DE, Settleman J, Engelman JA, Bardeesy N (2011). STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res 71: 5020-5029.
Darnell JE, Jr. (1997). STATs and gene regulation. Science 277: 1630-1635.
de Nigris F, Botti C, de Chiara A, Rossiello R, Apice G, Fazioli F, Fiorito C, Sica V, Napoli C (2006). Expression of transcription factor Yin Yang 1 in human osteosarcomas. Eur J Cancer 42: 2420-2424.
Donohoe ME, Zhang X, McGinnis L, Biggers J, Li E, Shi Y (1999). Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol Cell Biol 19: 7237-7244.
Downward J (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3: 11-22.
Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE (2009). Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324: 1713-1716.
Grabner B, Schramek D, Mueller KM, Moll HP, Svinka J, Hoffmann T, Bauer E, Blaas L, Hruschka N, Zboray K, Stiedl P, Nivarthi H, Bogner E, Gruber W, Mohr T, Zwick RH, Kenner L, Poli V, Aberger F, Stoiber D, Egger G, Esterbauer H, Zuber J, Moriggl R, Eferl R, Gyorffy B, Penninger JM, Popper H, Casanova E (2015). Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun 6: 6285.
Grivennikov SI, Karin M (2010). Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21: 11-19.
Gronroos E, Terentiev AA, Punga T, Ericsson J (2004). YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci U S A 101: 12165-12170.
Hall A, Marshall CJ, Spurr NK, Weiss RA (1983). Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303: 396-400.
Haura EB, Zheng Z, Song L, Cantor A, Bepler G (2005). Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin Cancer Res 11: 8288-8294.
Huang T, Wang G, Yang L, Peng B, Wen Y, Ding G, Wang Z (2017). Transcription Factor YY1 Modulates Lung Cancer Progression by Activating lncRNA-PVT1. DNA Cell Biol 36: 947-958.
Hyde-DeRuyscher RP, Jennings E, Shenk T (1995). DNA binding sites for the transcriptional activator/repressor YY1. Nucleic Acids Res 23: 4457-4465.
Jen J, Lin LL, Chen HT, Liao SY, Lo FY, Tang YA, Su WC, Salgia R, Hsu CL, Huang HC, Juan HF, Wang YC (2016). Oncoprotein ZNF322A transcriptionally deregulates alpha-adducin, cyclin D1 and p53 to promote tumor growth and metastasis in lung cancer. Oncogene 35: 2357-2369.
Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001). Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410: 1111-1116.
Kleiman E, Jia H, Loguercio S, Su AI, Feeney AJ (2016). YY1 plays an essential role at all stages of B-cell differentiation. Proc Natl Acad Sci U S A 113: E3911-3920.
Le Calvez F, Mukeria A, Hunt JD, Kelm O, Hung RJ, Taniere P, Brennan P, Boffetta P, Zaridze DG, Hainaut P (2005). TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res 65: 5076-5083.
Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H (2009). Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15: 283-293.
Lee H, Zhang P, Herrmann A, Yang C, Xin H, Wang Z, Hoon DS, Forman SJ, Jove R, Riggs AD, Yu H (2012). Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc Natl Acad Sci U S A 109: 7765-7769.
Lee JS, Galvin KM, See RH, Eckner R, Livingston D, Moran E, Shi Y (1995). Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev 9: 1188-1198.
Lee MH, Lahusen T, Wang RH, Xiao C, Xu X, Hwang YS, He WW, Shi Y, Deng CX (2012). Yin Yang 1 positively regulates BRCA1 and inhibits mammary cancer formation. Oncogene 31: 116-127.
Li C, Fang R, Sun Y, Han X, Li F, Gao B, Iafrate AJ, Liu XY, Pao W, Chen H, Ji H (2011). Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLoS One 6: e28204.
Li LC, Dahiya R (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics 18: 1427-1431.
Li Y, Wang Y, Zhang C, Yuan W, Wang J, Zhu C, Chen L, Huang W, Zeng W, Wu X, Liu M (2004). ZNF322, a novel human C2H2 Kruppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways. Biochem Biophys Res Commun 325: 1383-1392.
Liao SY, Chiang CW, Hsu CH, Chen YT, Jen J, Juan HF, Lai WW, Wang YC (2017). CK1delta/GSK3beta/FBXW7alpha axis promotes degradation of the ZNF322A oncoprotein to suppress lung cancer progression. Oncogene 36: 5722-5733.
Lo FY, Chang JW, Chang IS, Chen YJ, Hsu HS, Huang SF, Tsai FY, Jiang SS, Kanteti R, Nandi S, Salgia R, Wang YC (2012). The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization. BMC Cancer 12: 235.
Mizumoto Y, Kyo S, Kiyono T, Takakura M, Nakamura M, Maida Y, Mori N, Bono Y, Sakurai H, Inoue M (2011). Activation of NF-kappaB is a novel target of KRAS-induced endometrial carcinogenesis. Clin Cancer Res 17: 1341-1350.
Mori N, Yokota J, Akiyama T, Sameshima Y, Okamoto A, Mizoguchi H, Toyoshima K, Sugimura T, Terada M (1990). Variable mutations of the RB gene in small-cell lung carcinoma. Oncogene 5: 1713-1717.
Musteanu M, Blaas L, Mair M, Schlederer M, Bilban M, Tauber S, Esterbauer H, Mueller M, Casanova E, Kenner L, Poli V, Eferl R (2010). Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice. Gastroenterology 138: 1003-1011.
Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21: 2000-2008.
Norrby K (2006). In vivo models of angiogenesis. J Cell Mol Med 10: 588-612.
Normanno N, Tejpar S, Morgillo F, De Luca A, Van Cutsem E, Ciardiello F (2009). Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6: 519-527.
Prior IA, Lewis PD, Mattos C (2012). A comprehensive survey of Ras mutations in cancer. Cancer Res 72: 2457-2467.
Schlisio S, Halperin T, Vidal M, Nevins JR (2002). Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. EMBO J 21: 5775-5786.
Seto E, Shi Y, Shenk T (1991). YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro. Nature 354: 241-245.
Siegel RL, Miller KD, Jemal A (2015). Cancer statistics, 2015. CA Cancer J Clin 65: 5-29.
Siegel RL, Miller KD, Jemal A (2017). Cancer Statistics, 2017. CA Cancer J Clin 67: 7-30.
Simanshu DK, Nissley DV, McCormick F (2017). RAS Proteins and Their Regulators in Human Disease. Cell 170: 17-33.
Sunaga N, Imai H, Shimizu K, Shames DS, Kakegawa S, Girard L, Sato M, Kaira K, Ishizuka T, Gazdar AF, Minna JD, Mori M (2012). Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int J Cancer 130: 1733-1744.
Taiwan Ministry of Health and Welfare, R.O.C.T. General Health Statistics. 2017. http://www.mohw.gov.tw/DOS/np-1776-113.html
Thomas MJ, Seto E (1999). Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 236: 197-208.
Tseng HY, Chen YA, Jen J, Shen PC, Chen LM, Lin TD, Wang YC, Hsu HL (2017). Oncogenic MCT-1 activation promotes YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis Doi: 10.1038/oncsis.2017.13.
Vallejo A, Perurena N, Guruceaga E, Mazur PK, Martinez-Canarias S, Zandueta C, Valencia K, Arricibita A, Gwinn D, Sayles LC, Chuang CH, Guembe L, Bailey P, Chang DK, Biankin A, Ponz-Sarvise M, Andersen JB, Khatri P, Bozec A, Sweet-Cordero EA, Sage J, Lecanda F, Vicent S (2017). An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun 8: 14294.
Wang CC, Tsai MF, Dai TH, Hong TM, Chan WK, Chen JJ, Yang PC (2007). Synergistic activation of the tumor suppressor, HLJ1, by the transcription factors YY1 and activator protein 1. Cancer Res 67: 4816-4826.
Wang X, Feng Y, Xu L, Chen Y, Zhang Y, Su D, Ren G, Lu J, Huang B (2008). YY1 restrained cell senescence through repressing the transcription of p16. Biochim Biophys Acta 1783: 1876-1883.
Wu S, Wang H, Li Y, Xie Y, Huang C, Zhao H, Miyagishi M, Kasim V (2018). Transcription factor YY1 promotes cell proliferation by directly activating the pentose phosphate pathway. Cancer Res Doi: 10.1158/0008-5472.CAN-17-4047.
Wu LT (2017). Overexpression of ZNF322A in lung cancer cells promotes neo-angiogenesis. Master thesis of National Cheng Kung University.
Yu H, Jove R (2004). The STATs of cancer--new molecular targets come of age. Nat Rev Cancer 4: 97-105.
Yuan P, He XH, Rong YF, Cao J, Li Y, Hu YP, Liu Y, Li D, Lou W, Liu MF (2017). KRAS/NF-kappaB/YY1/miR-489 Signaling Axis Controls Pancreatic Cancer Metastasis. Cancer Res 77: 100-111.
Zhang JJ, Zhu Y, Zhang XF, Liu DF, Wang Y, Yang C, Shi GD, Peng YP, Zhang K, Tian L, Miao Y, Jiang KR (2017). Yin Yang-1 suppresses pancreatic ductal adenocarcinoma cell proliferation and tumor growth by regulating SOX2OT-SOX2 axis. Cancer Lett 408: 144-154.
Zhu Z, Golay HG, Barbie DA (2014). Targeting pathways downstream of KRAS in lung adenocarcinoma. Pharmacogenomics 15: 1507-1518.