簡易檢索 / 詳目顯示

研究生: 鄭閔中
CHENG, MIN-CHUNG
論文名稱: 間斷性雙重障礙外匯選擇權之評價
The Valuation of Discrete Double Barrier Foreign Currency Option
指導教授: 王明隆
Wang, Min Long
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 50
中文關鍵詞: 外匯選擇權雙重障礙選擇權定積分法起始值
外文關鍵詞: initial value, integral method, double-barrier option, Foreign currency option
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   從1973年布列敦森林協定崩解之後,為了規避外匯風險,外匯衍生性商品被廣泛的運用。外匯選擇權在交易市場上越來越盛行,尤其是櫃臺買賣市場。在1990代中期,新奇選擇權交易量的成長率也逐漸增加,而障礙選擇權則是成長率最高的。在此篇論文中,我們利用定積分法來評價間斷時間的外匯雙重障礙選擇權。這個方法是將Garmen and Kohlhagen (1983) 所推導出來的PDE轉換成熱傳導方程式,並根據起始值的條件由後向前求解PDE。間斷時間的外匯雙重障礙選擇權評價可以被視為求解一系列的起始值問題。藉由將起始值以及格林函數作積分,我們可以很輕易的求解熱傳導方程式,選擇權的價格也就可以很輕易的求出。定積分法可以被應用在評價更複雜的選擇權,例如波動度以及償金會改變。這是個對於處理障礙選擇權既有效率而且有用的方法。

      Foreign currency derivatives are widely used in order to hedge the exchange risk since the collapse of Bretton Wood agreement in 1973. Foreign currency options are more and more popular in the trading market especially in OTC market. In the mid 1990s, the growth rate of trading exotic currency options increased, and barrier options became the highest. In this paper, we price discrete time double barrier foreign currency option by using integral method. This method transfer PDE of Garmen and Kohlhagen (1983) into the Heat equation and solve PDE with initial conditions. Pricing discrete double barrier foreign currency option can be regarded as solving a sequence of the initial values. By integrating the initial values and the Green’s function we can solve Heat equation easily then the value of option can be obtained. The integral method can be applied to price an option with complex features such as changing volatility and changing rebates. It is an efficient and useful method to deal with pricing barrier options.

    Ⅰ. Introduction................................................................1 Ⅱ. Literature Review...........................................................6 1. Valuation of currency options................................................6 2. Valuation of currency options under stochastic interest rates................6 3. Valuation of currency options under stochastic volatility....................7 4. Barrier options..............................................................8 A. Closed-form solution.........................................................8 B. Lattice Method...............................................................8 C. Adaptive mesh model.........................................................10 D. Correction Method...........................................................11 E. Finite difference Method....................................................12 F. Monte Carlo Method..........................................................12 G. Quadrature Method...........................................................13 H. Other Methods...............................................................13 5. Double Barrier Options......................................................14 Ⅲ.Methodology.................................................................16 1. Model’s assumption.........................................................16 2. Transform the PDE of Currency option into Heat equation.....................18 3. Initial value problems......................................................20 4. Valuation of a double barrier knock-out call option.........................22 Ⅳ. Numerical Results..........................................................30 1. The convergence in different integral partitions............................32 2. The difference between two continuous valuations with the partition number 50 ............................................................................33 3. The impact of checking frequencies on call value with rebate................34 4. The impact of checking frequencies on call value with rebate................35 5. The double barrier knock-out call value for different exchange prices with rebate......................................................................36 6. The double barrier knock-out call value for different strike prices with rebate......................................................................37 7. The double barrier knock-out call value for different volatilities with rebate ............................................................................38 8. The double barrier knock-out call value for different rD-rF with rebate.....39 9. The double barrier knock-out call value for different barrier levels with rebate......................................................................40 10. The double barrier knock-out call value for different rebates..............41 11. The double barrier knock-out call value for a different length of time with rebate.....................................................................42 12. The double barrier knock-out call value for different length of time with rebate.....................................................................43 Ⅴ. Conclusions and further research...........................................44 1. Conclusions.................................................................44 2. Further researches..........................................................45 Reference......................................................................46

    [1] Ahn, D., S. Figlewski, and B. Gao, 1999, Pricing Discrete Barrier Options with an Adaptive Mesh Model, Journal of Derivatives 2, 33-44.
    [2] Ait-Sahalia, F., and T. L. Lai, 1997, Valuation of Discrete Barrier and Hindsight Options, Journal of Financial Engineering 6, 169-177
    [3] Ait-Sahalia, F., and T. L. Lai, 1998, Random Walk Duality and Valuation of Discrete Lookback Options, Applied Mathematical Finance 5, 227-240
    [4] Amin, K.I. and R.A. Jarrow, 1991, Pricing foreign Currency Options under Stochastic Interest Rates, Journal of International Money and Finance 10, 310-329
    [5] Anderson, L., and R. Brotherton-Ratchcliffe, 1996, Exact Exotics, Risk 9, No.10 85-89
    [6] Andricopoulos, A., M. Widdicks, P. Duck, and D. Newton, 2003, Universal Option Valuation using Quadrature Methods, Journal of Financial Economics 67, 447-471
    [7] Baldi, O., L. Caramellion, and M. G. Lovino, 1999, Pricing General Barrier Options: A numerical Approach Using Sharp Large Deviations, Mathematical Finance 9,293-322
    [8] Beaglehole, D.R., P.H. Dybvig, and G. Zhou, 1997, Going to extremes: Correcting Simulation bias in Exotic Option Valuation, Financial Analysis Journal January/Feburary 62-68
    [9] Black, F., 1976, The Pricing of Commodity Contracts, Journal of Financial Economics January 3 167-179
    [10]Black, F., and M. Scholes, 1972, The Valuation of Option Contracts and a Test of Market Efficiency, Journal of Finance 27, 399-417
    [11]Black, F., and M. Scholes, 1973, The Pricing of Options and Corporate Liabilities , Journal of Political Economy 81, 637-654
    [12]Bodurtha, J. N. and G. R. Courtadon, 1987, Tests of the American Option Pricing model on the Foreign Currency Options Market, Journal of Financial and Quantitative Analysis 22,153-167
    [13]Bollerslev, T., 1987, A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return , Review of Economics and Statistics 69, 542-547
    [14]Boyle, P., 1977, Options: a Monte Carlo Approach, Journal of Financial Economics 4, 323-338
    [15]Boyle, P. P., 1986, Option Valuation Using a Three-Jump Process, International Options Journal 3, 7-12
    [16]Boyle, P. P., M. Broadie, and P. Glasserman, 1997, Monte Carlo methods for security Pricing, Journal of Economic Dynamics and Control 21, 1267-1321
    [17]Boyle, P. P., and S.H. Lau, 1994, Bumping Up Against the Barrier with the Binomial Method, Journal of Derivatives 2, 6-14.
    [18]Boyle, P., and Y. S. Tian, 1998, An Explicit Finite Difference Approach to the Pricing of Barrier Options, Applied Mathematical Finance 5, 17-43
    [19]Brennan, M. J., and E. S. Schwartz, 1978, Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis, Journal of Financial and Quantitative Analysis, September , 461- 474
    [20]Broadie, M., P. Glasserman, and S. Kuo, 1997, A Continuity Correction for Discrete Barrier Options, Mathematical Finance 7, 325-348
    [21]Broadie, M., P. Glasserman, and S. Kuo, 1999, Connecting discrete and continuous path-dependent options, Finance and Stochastics 3, 55-82
    [22]Ckeuk. T. H. F., and T. C. F. Vorst, 1995, Complex Barrier Options, Journal of Derivatives 4, 8-22
    [23]Choi, S., and M. D. Marcozzi, 2003, The valuation of Foreign Currency Options under Stochastic Interest Rates, Computers and Mathematics with Applications 46, 741-749
    [24]Costabile, M., 2001, A discrete-time algorithm for pricing double barrier options, Decisions in Economics And Finance DEF24, 49-58
    [25]Cox, J.C., S. A. Ross, and M. Rubinstein, 1979, Option Pricing: A Simplified Approach, Journal of Financial Economics 7, 229-264.
    [26]Cox, J., and M. Rubinstein, 1985, Options Markets, Prentice-Hall
    [27]Curtardon, G.., 1982, A More Accurate Finite Difference Approximation for the Valuation of Options, Journal of Financial and Quantitative Analysis, December, 697- 703
    [28]Duan, J. C., E. Dudley, G. Gauthier, and J-G. Simonato, 2003, Pricing Discretely Monitored Barrier Options by a Markov Chain, Journal of Derivatives Summer ,9-32
    [29]Feiger, G., and B. Jacquillat, 1979, Currency Option Bonds, Puts and Calls on Spot Exchange and the Hedging of Contingent Foreign Earnings Journal of Finance December, 5, 1129-1139
    [30]Figlewski, S., and B. Gao, 1999, The adaptive mesh model: a new approach to efficient option pricing, Journal of Financial Economics 53, 313-351.
    [31]Fusai, G., and M. C. Recchioni, 2003, Analysis of Quadrature methods for the Valuation of Discrete Barrier Options, Working Paper, Universita del Piemonte Orientale
    [32]Garman, M., and S. Kohlhagen, 1983, Foreign Currency Option Values, Journal of International Money and Finance 2, 231-237
    [33]Geman, H., and M. Yor, 1996, Pricing and Hedging Double-Barrier Options: A Probabilistic Approach, Mathematical Finance Vol. 6 No.4, 365-378
    [34]Grabbe, J. Orlin, 1983, The Pricing of Call and Put Options on Foreign Exchange, Journal of International Money and Finance December 2 239-253
    [35]Hörfelt, P., 2003, Extension of the Corrected Barrier Approximation By Broadie, Glasserman, and Kou, Finance and Stochastics 7, 231-243
    [36]Hörfelt, P., 2003, Pricing discrete European barrier options using Lattice random walks, Mathematical Finance 13, 503-524
    [37]Heston, S. L., 1993, A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, The Review of Financial Studies 6, 327-343
    [38]Hilliard J. E., J. Madura, and A.L.Tucker, 1991, Currency Option Pricing with Stochastic Domestic and Foreign Interest Rates, Journal of Financial and Quantitative Analysis Vol.26, 139-151
    [39]Hsieh, D., 1988, A Model of Foreign Currency Options with Random Interest Rates, Working Paper No.235 Graduate School of Business, Uni. Of Chicago
    [40]Hull, J., and A. White, 1987, The Pricing of Options on Assets with Stochastic Volatilities, Journal of Finance 42, 281-300
    [41]Johnson, H., and D. Shanno, 1987, Option Pricing when the Variance is Changing, Journal of Financial and Quantitative Analysis 22, 143-151
    [42]Kou, S. G.., 2003, On pricing of Discrete barrier options, Statistica Sinica 13, 955-964
    [43]Kuan, G.., and N. J. Webber, 2003, Valuing Discrete Barrier Options on a Dirichlet Lattice, Working Paper
    [44]Kunitomo, N., and M. Ikeda, 1992, Pricing Options with Curved Boundaries, Mathematical Finance Vol. 2 No.4, 275-298
    [45]Melino, A., and S. M. Turnbull, 1987, The Pricing of Foreign Currency Options, Working Paper 8720 (Department of Economics, University of Toronto, Toronto)
    [46]Melino, A., and S. M. Turnbull, 1990, The Pricing of Foreign Currency Options with Stochastic Volatility, Journal of Econometrics 45, 239-265
    [47]Merton, R. C., 1973, Theory of Rational Option Pricing, Bell Journal of Economics and Management Science 4, 141-183.
    [48]Pelsser, A., 2000, Pricing double barrier options using Laplace transforms, Finance and Stochastics 4, 95-104
    [49]Rabinovitch, R., 1989, Pricing Stock and Bond Options when the Default-Free Rate is Stochastic, Journal of Financial and Quantitative Analysis 23, 447-457
    [50]Reiner, E., 2000, Convolution Methods for Path-Dependent Options, Preprint, UBS Warburg Dillion Read.
    [51]Reiner, E., and M. Rubinstein, 1991, Breaking Down the Barriers, RISK 4, 28-35.
    [52]Ritchken, P., 1995, On Pricing Barrier Options, Journal of Derivatives 3, 19-28.
    [53]Ritchken, P., and B. Kamrad, 1991, Multinomial Approximating Models for Options with k-State Variables, Management Science 37, No.12, 1640-1652.
    [54]Samuelson, P., and R. Merton, 1969, A Complete Model of Warrant Pricing that Maximizes Utility, Industrial Management Review Winter 10, 17-46
    [55]Schwartz, E. S., 1977, The Valuation of Warrants: Implementing a New Approach., Journal of Financial Economics, 4, 79- 93
    [56]Scott, L. O., 1987, Option Pricing when the Variance changes Randomly: Theory, Estimation, and an Application, Journal of Financial and Quantitative Analysis 22, 419-438
    [57]Stulz, R. M., 1982, Options on the Minimum or Maximum of Two Risky Assets, Journal of Financial Economics 10, 161-185
    [58]Sullivan, M. A., 2000, Pricing Discretely Monitored Barrier Options, Journal of Computational Finance, 3(4) ,35-52
    [59]Wang, Andrew M. L., and S. Y. Shen, 2004, On Pricing of the Up-and-Out Call –A Boundary Integral Method Approach, Asia Pacific Management Review(forthcoming)
    [60]Wasserfallen, W., and H. Zimmerman, 1986, The Wiener Process, Variance Measurement and Option Pricing-Evience from Intra-Daily Data on Foreign Exchange, Working Paper, Univ. of Bern and Hochschule St. Gallen
    [61]Wei, J., 1998, Valuation of Discrete Barrier Options by Interpolations, Journal of Derivatives 6, 51-73
    [62]Wiggins, J. B., 1987, Option Values under Stochastic Volatility: Theory and Empirical Estimates, Journal of Financial Economics 19,351-372
    [63]Zvan, R., K. R. Vetzal, and P. A. Forsyth, 2000, PDE Methods for Pricing Barrier Options, Journal of Economic Dynamics and Control 24, 1563-1590

    無法下載圖示 校內:2026-01-09公開
    校外:2056-01-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE