簡易檢索 / 詳目顯示

研究生: 陳昱伶
Chen, Yu-Ling
論文名稱: 砂砱再利用於鹼激發3D列印材料之研究
Coral Gravel Reused in the Production of Alkali-Activated 3D Printing Materials
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 112
中文關鍵詞: 砂砱3D列印鹼激發爐石
外文關鍵詞: coral gravel, 3D printing, alkali-activated slag
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3D列印技術已廣泛應用於建築與土木工程領域,所需列印材料除仍兼顧工程性能,亦逐漸朝向資源再利用與永續發展邁進。本研究主要欲提高廢棄砂砱之去化比例,探討其應用於鹼激發爐石作為3D列印材料可行性。配比設計中採用不同爐石與砂砱比例介於 1:2.25 至 1:2.75之範圍,搭配不同粗細砂砱混合比例,探討對其所製成材料於3D列印製程下可列印性、抗壓強度、抗彎強度、長度變化率,以及沿不同列印方向所造成之非均向性等影響。
    3D列印實作結果顯示,此配比範圍內,所有配比設計皆可維持穩定擠出與成形表現,亦即皆具可列印性。同時,各配比設計之列印材料試體28天齡期抗壓強度可達30至56 MPa,28天抗彎強度則介於4.2至11.3 MPa之範圍。此外,3D列印材料不同主軸方向之力學性質存在非均向性特質,其中,以沿列印之X方向最佳,條間Y與層間Z兩方向次之,且條間與層間數據無顯著差異,而抗彎強度之非均向性較抗壓強度更加明顯。最後,各配比設計試體於7天齡期呈現微幅收縮或膨脹行為,隨齡期增加所有配比皆逐漸轉換為收縮行為,至28天齡期時之變化率達-0.121至-0.586 %之間。綜合上述各試驗結果顯示,砂砱應用於製作鹼激發3D列印材料,確具可行性與開發潛力。

    With the rapid development of three-dimensional printing in the fields of architecture and civil engineering, increasing attention has been paid not only to engineering performance but also to the resource reutilization and sustainability of printable materials. This study investigates the feasibility of reusing waste coral gravel as aggregate in alkali-activated slag–based materials for 3D printing, with the objective of increasing the utilization of discarded coral gravel. Mixture proportions were designed with slag-to-coral gravel ratios ranging from 1:2.25 to 1:2.75, combined with varying proportions of coarse and fine coral gravel. The printability, mechanical properties, dimensional stability, and printing-induced anisotropy of the materials were systematically evaluated.
    The experimental results demonstrate that all mixtures within the investigated range achieved stable extrusion and maintained adequate buildability during the 3D printing process, indicating satisfactory printability. At 28 days, the compressive strength of the printed specimens ranged from 30 to 56 MPa, while the bending strength ranged from 4.2 to 11.3 MPa. Mechanical properties exhibited clear anisotropic behavior depending on the printing direction. Specimens loaded along the printing direction (X-direction) showed the highest strength, whereas those tested along the inter-filament (Y-direction) and inter-layer (Z-direction) directions exhibited relatively lower but comparable performance. The anisotropy was more pronounced in bending strength than in compressive strength. In terms of dimensional stability, slight expansion or shrinkage was observed at early ages, followed by gradual shrinkage with increasing curing time. The length change at 28 days ranged between −0.121% and −0.586%.
    Based on the overall results, the reuse of waste coral gravel in alkali-activated 3D printing materials is technically feasible and shows promising potential for sustainable construction applications.

    摘要I Extended AbstractII 誌謝 XIV 目錄XV 表目錄XVII 圖目錄XVIII 第一章 緒論1 1.1 研究動機與目的1 1.2 研究架構2 第二章 文獻回顧與理論5 2.1 3D列印技術5 2.1.1 3D列印發展歷程5 2.1.2 3D列印混凝土新拌性質7 2.1.3 3D列印混凝土硬固性質8 2.1.4 不同骨材應用於3D列印混凝土10 2.2 鹼激發爐石11 2.2.1 爐石與鹼激發反應機制11 2.2.2 AAS與OPC系統比較12 2.2.3 鹼激發材料之收縮行為13 2.3 砂砱應用14 第三章 試驗規劃與方法20 3.1 試驗目的20 3.2 試驗規劃20 3.2.1 試驗材料20 3.2.2 配比設計21 3.2.3 材料拌合程序與列印準備23 3.3 試驗設備與方法24 3.3.1 列印設備與參數設定24 3.3.2 試體製作與養護25 3.4 試驗項目27 3.4.1 抗壓強度試驗27 3.4.2 抗彎強度試驗29 3.4.3 長度變化試驗31 第四章 結果分析與討論52 4.1 可列印性分析52 4.2 3D列印之鹼激發漿體硬固性質53 4.2.1 抗壓強度54 4.2.2 抗彎強度57 4.2.3 非均向性59 4.2.4 長度變化61 第五章 結論與建議85 5.1 結論85 5.2 建議86 參考文獻88

    [1]R.A. Buswell, W.R.L. de Silva, S.Z. Jones, J. Dirrenberger, 3D printing using concrete extrusion: A roadmap for research, Cement and Concrete Research 112 (2018) 37–49.
    [2]R.A. Buswell, W.R.L. de Silva, F.P. Bos, R.J.M. Schipper, D. Lowke, N. Hack, H. Kloft, V. Mechtcherine, T. Wangler, N. Roussel, A process classification framework for defining and describing Digital Fabrication with Concrete, Cement and Concrete Research 134 (2020) 106068.
    [3]B. Khoshnevis, Automated construction by contour crafting—related robotics and information technologies, Automation in Construction 13(1) (2004) 5–19.
    [4]G. Ji, J. Xiao, P. Zhi, Y.-C. Wu, and N. Han,Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates, Construction and Building Materials 325 (2022) 126740.
    [5]X. Zhang, M. Li, J. H. Lim, Y. Weng, Y. W. D. Tay, H. Pham, and Q.-C. Pham, Large-scale 3D printing by a team of mobile robots, Automation in Construction 95 (2018) 98–106.
    [6]S. Hou, Z. Duan, J. Xiao, and J. Ye, A review of 3D printed concrete: Performance requirements, testing measurements and mix design, Construction and Building Materials 273 (2021) 121752.
    [7]A. Perrot, D. Rangeard, A. Pierre, Structural build-up of cement-based materials used for 3D-printing extrusion techniques, Materials and Structures 49 (2016) 1213–1220.
    [8]Z. Li, K. Wang, J. He, Fresh and hardened properties of extrusion-based 3D-printed cementitious materials: A review, Sustainability 12(14) (2020) 5628.
    [9]劉玉雯,3D 列印混凝土可列印性評估與非均向性強度試驗,營建知訊,第 491 期 (2023)。
    [10] S. Surehali, A. Tripathi, N. Neithalath, Anisotropy in additively manufactured concrete specimens under compressive loading, Materials 16(15) (2023) 5488.
    [11] S. K. Kaliyavaradhan, P. S. Ambily, P. R. Prem, S. B. Ghodke, Test methods for 3D printable concrete, Automation in Construction 142 (2022) 104529.
    [12] T. Glotz, Y. Petryna, Experimental characterization of anisotropic mechanical behaviour and failure mechanisms of hardened printed concrete, Materials 17(16) (2024) 3931.
    [13] M. Maroszek, D.J. Kroon, H.H. Brouwers, R.J.M. Wolfs, Anisotropy of mechanical properties of 3D-printed materials—Influence of application time of subsequent layers, Materials 18(16) (2025) 3845.
    [14] J.L. Provis, A. Palomo, C. Shi, Advances in understanding alkali-activated materials, Cement and Concrete Research 78 (2015) 110–125.
    [15] T. Luukkonen, S. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen, One-part alkali-activated materials: A review, Cement and Concrete Research 103 (2018) 21–34.
    [16] Z. Li, Y. Chen, J.L. Provis, O. Cizer, G. Ye, Autogenous shrinkage of alkali-activated slag: A critical review, Cement and Concrete Research 172 (2023) 107244.
    [17] W. Cui, T. Wang, X. Chen, Study on shrinkage in alkali-activated slag–fly ash cementitious material, Materials 16(11) (2023) 3958.
    [18] 內政部建築研究所,鹼活化高爐石粉混凝土應用於營建材料之研究,協同研究報告,(2010)。
    [19] H. Wang, X. Wu, J. Wang, Q. Li, and Z. Huang, Hardening mechanism of coral aggregates in cement-based systems, Materials 16(1) (2023) 214.
    [20] J. Liu, B. Ju, W. Xie, H. Yu, H. Xiao, S. Dong, and W. Yang, Design and evaluation of an ultrahigh-strength coral aggregate concrete, Materials 14(19) (2021) 5871.
    [21] 澎湖縣政府,本府104–112年度委託調查、研究、可行性評估、規劃、設計案資料彙整表(含砂砱調查與清除計畫列管),(2024)。

    QR CODE