簡易檢索 / 詳目顯示

研究生: 雷光夏
Rooydell, Reza
論文名稱: 含鋅混合金屬有機前驅物和衍生摻雜氧化鋅奈米結構之合成及在氣體感應和光催化劑之應用
Zn-containing Hybrid Metal Organic Precursores and Derived Doped ZnO Nanostructures: Synthesis Properties and Application in Gas Sensing and Photocatalyst
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 118
外文關鍵詞: Metal Organic Precursors, Doped ZnO Nanostructure
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A series of Metal Organic precursors (MOPs) were synthesized, structure determination found out metal-ligand complex follows our proposal. The main objective of this study was to synthesize and characterize precursors that are capable of producing zinc/copper precursors with varity ratio of zinc/copper, the researcher studied Cu doped ZnO via these precursors by thin films and chemical vapor deposition (CVD). Metal Organic Precursors (MOPs) are often volatile enough to be useful as precursors of the metals in vapor phase deposition process, e.g. chemical vapor deposition (CVD). MOPs materials have been a focus of researchers for their applications as molecular storage, molecular sensing, catalysis, asymmetric synthesis and host materials. MOPs represent a promising new class of crystalline solids because they exhibit large pore volumes, high surface areas, permanent porosity, high thermal stability, and feature open channels with tunable dimensions and topology. In this study we investigated the design, synthesis, and structures of a new family of MOPs. Here we present our effort in continuing MOPs precursors design and synthesis to expand our knowledge about MOPs family.
    In chapter 1, MOPs precursors and metals doped ZnO with the application are introduced. In chapter 2, we synthesized organic hybrid novel metal mixed compounds of bis (acetylacetonato κ-O, O') [zinc (II)/copper (II)]. Taking C10H14O4Zn0.7Cu0.3 (Z0.7C0.3AA) as an example, the crystals are composed of Z0.7C0.3AA units and uncoordinated water molecules. Single-crystal X-ray diffraction results show that the complex Z0.7C0.3AA crystallizes in the monoclinic system, space group P21/n. The unit cell dimensions are a = 10.329(4) Å, b = 4.6947(18) Å, and c = 11.369(4) Å; the angles are α = 90°, β = 91.881(6) °, and γ = 90°, the volume is 551.0(4) Å3, and Z = 2. In this process, the M (II) ions of Zn and Cu mix and occupy the centers of symmetrical structure units, which are coordinated to two ligands. The measured bond lengths and angles of O-M-O vary with the ratio of metal species over the entire series of the synthesized complexes. The chemistry of the as-synthesized compounds has been characterized using infrared spectroscopy, mass spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis, and the morphology of the products has been characterized using scanning electron microscopy. The thermal decomposition of the Z0.7C0.3AA composites measured by thermo gravimetric analysis suggests that these complexes are volatile. The thermal characteristics of these complexes make them attractive precursors for metal organic chemical vapor deposition.
    Chapter 3 summarizes the doping process Cu doped ZnO by these precursors series (Cu 1-10 at%). Bis (acetylacetonato κ-O, O') [zinc (II)/copper (II)] Hybrid Organic-inorganic Complexes. The species that we were able to control the amount of the percentage of this reaction indicate that is not a simple formation but possibly proceeds control amount of hybrid precursors to controllable of Cu(I) and Cu(II) in doping process. The second class that we attempted to examine as zinc/copper precursors for XPS and PL chemical were the Cu(I), Cu(II) controllable. we studied the Photocatalyst of a series of these precursors (Cu 1-10 at%). Finally, in Chapter 4 we came up to the conclusion of this research.
    In this research, we synthesized and Characterized a series of Bis (acetylacetonato κ-O, O') [zinc/copper] Hybrid Organic-inorganic Complexes as Solid Metal Organic Precursor, we provided an overview of interpenetration involved optical and magnetic properties in metal organic precursors (MOPs) or coordination organic materials. Successful approaches for controlling the interpenetration in MOPs also have been introduced and summarized. The formation of a complete solid solution between acetylacetonate (acac) complexes of zinc nitrate and copper nitrate, [(Zn1_xCux)(acac)2] has been investigated through the co-synthesis method. Well crystallized, single crystal diffraction SCD, EDX, XPS, analysis was fulfilled for each nominal value of x confirming.
    The UV/Blue and green (near-white) emissions were found in photoluminescence spectra indicating the possibility to use the Cu doped ZnO Nano rods structures on ZnO substrate. Optical studies of the nanostructured copper doped zinc oxides showed the decrease in band gap with increasing content of the doping agent copper. The photocurrent action spectra illustrated that the enhanced photo activity of the Cu-doped ZnO Nano rods was mainly due to the improved visible photon harvesting achieved by Cu doping. These results may facilitate the use of transition metal ion-doped ZnO in other photo conversion applications, such as ZnO based dye-sensitized solar cells and magnetism-assisted photocatalytic systems. It is revealed from PL studies that the band-edge/UV-vis emission decreases, whereas, the visible emission is found to increase with increase of the doping concentration. The decrease in the band-edge emission can be attributed to the substitution of Zn by Cu ions in the ZnO lattice.
    Finally, we synthesized Cu doped ZnO nanostrucyures by these series Hybrid Organic-inorganic precursors. We were able to control the amount of the percentage of this reaction indication that is not a simple formation but possibly proceeds control amount of hybrid precursors to controllable of Cu(I) and Cu(II) in doping process. the crystal structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), UV–vis spectrum, photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) are used to characterize the material properties.

    Abstract........I Acknowledgements........III Table of contents........ IV List of tables.........VII List of figures...........VII List of schems......... XIV List of Abbreviations.......... XV Chapter 1. Introduction ......1 1.Introduction .........2 1.1. ZnO.........5 1.2. CuO........6 1.3: Cu doped ZnO nanorods .......7 1.4. Overview.........8 1.4.1: Background of metal organic precursors with different ligand and application...8 1.4.2: Review of some important previous research work metals doped ZnO Precursors. ...37 1.4. 3. Acetylacetonate C5H8O2 (acac) .......51 1.4.4. Infrared magnetic and structural study of unsolvated [Cu(acac)2] ....52 1.4.5. Bis (acetylacetonato-k2O, O)- [copper(II)nickel(II) (0.31/0.69)]: a mixed-metal complex...58 2. motivation........61 3. Objectives of the present study......62 Chapter 2: Synthesis and characterization of bis (acetylacetonato κ-O, O’) [zinc(II)/copper(II)] hybrid organic–inorganic complexes as solid metal organic precursors....65 2.1. Experimental procedure.......66 2.1.1. Synthesis of Bis(acetylacetonato)copper.......66 2.1.2. Synthesis of Bis(acetylacetonato)zinc......68 2.1.3. Preparation of Znx/Cu1-x (acac)2......70 2.2. Results and discussion.......72 2.2.1. Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM)..72 2.2.2. Energy Dispersive Spectrometer (EDS or EDX) analysis... ..74 2.2.3. Fourier Transform Infrared Spectrometry (FT-IR) .. ....74 2.2.4. Mass Spectroscopy (MS) .......77 2.2.5. X-ray photoelectron spectroscopy (XPS) ......78 2.2.6. X- Ray Diffraction(XRD) ......80 2.2.7. Thermo Gravimetric Analysis (TGA) ......86 Chapter 3: Cu doped ZnO nanorods with controllable Cu content by using single metal organic precursors and their photocatalytic and luminescence properties..88 3.1. Experimental procedure ......89 3.1.1. Preparation of CuO........89 3.1.2. Preparation of ZnO nanostructures.....90 3.1.3. Preparation of ZnO/CuO nanostructures......90 3.2. Characterization.......90 3.3. Results and discussion.......93 3.3.1. Microstructure characterization of Cu doped ZnO nanorods....93 3.3.2. Energy-dispersive X-ray spectroscopy (EDX). ......94 3.3.3. X-ray diffraction (XRD).... ....97 3.3.4. Scanning electron microscope (SEM) transmission electron microscope (TEM)....101 3.3.5. X-ray photoelectron spectroscopy (XPS)... ...102 3.3.6. UV-Vis absorption and degradation of (MO).. ....105 3.3.7. Photoluminescence (PL) properties of Cu-doped ZnO nanorods....109 Chapter 4: Conclusion.....112 4.1: Conclusion .......113 Reference..........115 List of Tables Table 1. Selected distances and angles......55 Table 2 shows Crystal data of [Cu0.31Ni0.69(C5H7O2)2] ......59 Table 3. Crystal data and structure refinement for C10 H14 Cu O4......67 Table 4. Crystal data and structure refinement for C10 H16 O5 Zn.....69 Table 5. Assignments of the peaks in the FT-IR spectra of CAA, ZAA, and Z0.7 C0.3 AA..76 Table 6: XPS results for Zn and Cu doublet peaks for CAA, ZAA, and Z0.7C0.3AA..79 Table 7. Crystal data of Z0.7C0.3AA....84 Table 8. Bond lengths of different (C–H.O), (C–H.O) π and (H.H) bonding in the unit cell of Z0.7C0.3AA.........85 Table 9. Comparison of bond lengths in the unit cells of CAA, ZAA, and Z0.7C0.3AA...85 Table 10. Comparison of bond angles in the unit cells of CAA, ZAA, and Z0.7C0.3AA...86 List of figures Fig.1. Precursor powders are mixed and packed followed by adding solvent dropwise to synthesize the HKUST-1 monolith. .....9 Fig. 2. One-step self-assembly of 1. .....10 Fig. 3. (a) Coordination environment of MgII in 1; (b) the Mg2(COO)2 units connect the bdc2– ligands to form a 1D chain: Mg, red; O, yellow; N, blue; phen ligands are shown in green and all hydrogen atoms are omitted for clarity. ......11 Fig. 4. Structures of 1: (a) A robust 3D MOF 1 viewed along the c axis; Mg, pink, O yellow, H green, C gray; (b) Schematic view of the 3D pillar-layered structure. Symmetry code #1: –0.5 + x, 0.5 – y, –0.5 + z; #2: –0.5 – x, 0.5 + y, –0.5 – z.....12 Fig. 5. Structures of 1: (a) A robust 3D MOF 1 viewed along the c axis; Mg, pink; O, yellow; H, green; C, gray; (b) Schematic view of the 3D pillar-layered structure. Symmetry code #1: –0.5 + x, 0.5 – y, –0.5 + z; #2: –0.5 – x, 0.5 + y, –0.5 – z.. .....13 Fig. 6. PXRD patterns of 1 showing the stability towards treatment with: DMF (red), THF (green), toluene (blue), methanol (cyan), and water (pink)....14 Fig. 7. Thermogravimetric analysis curve of 1....14 Fig. 8. (a) Solid-state emission of 1 compared with the 1,10-phen and 1,4-bdc ligands; (b) Fluorescence lifetime measurements for a powder sample of 1 at room temperature....15 Fig. 9. DTA of (Cr1_xGax) (acac)3 for x = 1, 0.7, 0.3 and 0. ....17 Fig. 10. Temperature-dependent weight loss (due to sublimation) for complexes with different compositions........17 Fig. 11. ORTEP and packing diagram for (Cr0.9Ga0.1) (acac)3...18 Fig. 12. ORTEP and packing diagrams fo(Cr0.5Ga0.5) (acac)3...19 Fig. 13. (A) XRD pattern of b-Ga2O3 from the JCPDS database. (B) Powder diffraction pattern of the sample obtained from controlled pyrolysis of (Cr0.5Ga0.5) (acac)3, evidencing the formation of β-(Cr,Ga)2O3. ..........19 Fig. 14. The ligand (L-itpy) chosen, and the synthesised complexes 1 and 2..21 Fig. 15 (A) ORTEP diagram of complex 1. (B) Crystal packing arrangement of complex 1.21 Fig. 16 Absorption spectral titration of complex 1 (A) and 2 (B) in the presence of increasing concentrations of ctDNA in tris (pH 7.2) at 25 °C. Inset: plot of [DNA]/ (εa − εf) versus [DNA].. .22 Fig. 17. Fluorescence spectra of BSA (20 μM) in the presence of increasing amounts of (A) complex 1 (0–30 μM) and (B) complex 2 (0–30 μM) in Tris buffer (pH 7.2). Inset: plot of I0/I vs. [complex]. ...23 Fig. 18. Schematic illustration of the synthesis procedure for porous MoCx nano-octahedrons. (a) Synthesis of NENU-5 nano-octahedrons with Mobased POMs residing in the pores of HKUST-1 host. (b) Formation of MoCx-Cu nano-octahedrons after annealing at 800 °C. (c) Removal of metallic Cu nanoparticles by Fe3t etching to produce porous MoCx nano-octahedrons for electrocatalytic hydrogen production.. ..24 Fig. 19. Fabrication of porous carbon materials from Al-based metal-organic gels. (a) Schematic illustration of the gel structure, (b) typical synthesis procedure of the porous carbon products, (c, d) photographs of as-made xerogels (bulk density: 0.5612 g cm-3) and their derived carbon products MOX-C (0.1185 g cm-3), and (e) photograph of an integrate aerogel monolith (0.1189 g cm-3) and its derived carbon product MOA-C (0.0952 g cm-3). .......25 Fig. 20. Synthetic route for the preparation of the target compounds....26 Fig. 21 a ORTEP of compound I drawn with 30 % ellipsoidal probability. b ORTEP of compound II, without the treatment of disorder. c ORTEP of compound II having disorder along O6–C28=C29–C30 chain of the molecule B in the asymmetric unit (containing two molecules A and B) drawn with 30 % ellipsoidal probability.....28 Fig. 22 Overlay diagrams between a I (experimental) and I (theoretical), b I (experimental) and IIA (experimental), c I (experimental) and IIB (experimental), d IIA (experimental) and IIB (experimental), e IIB (experimental) and IIB (theoretical)..........29 Fig. 23. Packing motifs of I a showing different C–H.π interactions down the crystallographic ac plane. b showing C–H.O=C hydrogen bonds with the oxygen atom down the ac plane. c showing bifurcated C–H.O=C hydrogen bond with the acceptor oxygen atom (O1) down the ab plane. d Packing diagram of II showing the array of molecules (A.A) forming a tetrameric sheet down the ac plane. e and f depicts an alternate layer of molecules (IIA.IIB) viewed down the ab plane and ac plane respectively...30 Fig. 24. Molecular pairs of compound I in order of decreasing interaction energy obtained from PIXEL. Cg1 = C1–C2–C3–C4– C5–C6, Cg2 = C7–C8–C9–C10–C11–C12...31 Fig. 25. ORTEP views of molecules in MMONS-1, MMONS-2 and MMONS-3, showing the atom labelling scheme; common labels are shown only for MMONS-1. Ellipsoids are drawn with 50% probability level.......32 Fig. 26. Mercury overlay of MMONS molecules in the three polymorphs showing differences in molecular geometry and conformation. The upper view is from above the C4–C7 bond, and the lower view is perpendicular to this. .....33 Fig. 27. MMONS-1 (a) Molecular packing diagram viewed down the c axis and highlighting C–H.π and H.H close contacts; (b) intermolecular C–H.O close contacts in a sheet. ...34 Fig. 28. MMONS-2 (a) Molecular packing diagram viewed along [101] showing close C–H.O contacts and molecules at the two different sites in the unit cell. Molecule 1 (grey carbon atoms) is ordered, but two different conformations are disordered at site 2 (only molecule 2a is depicted in the figure, and with brown carbon atoms); (b) Overlay of disordered molecules at site 2; molecule 2a (68% occupancy) is depicted with thick bonds and molecule 2b (32% occupancy) with thin bonds...36 Fig. 29. MMONS-3 molecular packing diagrams (a) viewed down the b axis highlighting close C–H.π contacts; (b) down a showing close C–H.O and H.H contacts. ....37 Fig. 30. XRD patterns of ZIF-8 nanocrystals prepared with different zinc precursors...39 Fig. 31. TGA curves of ZIF-8 nanocrystals prepared from Zn(NO3)2 (black line), Zn(OAc)2 (red line), and ZnBr2 (blue line). ......40 Fig. 32. (a) XRD patterns of the 3% Cu-doped ZnO nanorods on substrates. Insert shows an SEM image of 3% Cu-doped ZnO rods on SiO2/Si (0 0 1). (b) Comparison of the (1 0 0), (0 0 2) and (1 0 1) peaks taken for pure ZnO and 3% Cu-doped ZnO. ....41 Fig. 33. XPS spectra corresponding to the (a) Zn-2p, (b) Cu-2p, and (c) O-1s core level of Cu-doped ZnO rods supported on SiO2/Si (0 0 1) ........42 Fig.34. One-Step Synthesis and Transformation of Cu(I)-Doped Zinc Sulfide Nanocrystals to Cu1.94S−ZnS Heterostructured Nanocrystals.........44 Fig. 35. Low and high-magnification SEM images of nanomaterials synthesized using aqueous solutions containing (a) and (b) 0.1M Cu(NO3)2 and 0.05M Zn(NO3)2, and (c) and (d) 0.05M Cu(NO3)2 and 0.1M Zn(NO3)2. ......45 Fig. 36. XRD diffraction patterns of the nanomaterials synthesized using precursors with Cu(NO3)2 to Zn(NO3)2 ratios of (a) 2:1, (b) 1:2 after follow-up heating, and (c) the enlarged (0002) peaks for undoped ZnO and Cu doped ZnO synthesized using precursors with Cu2+ to Zn2+ ratios of 2:1 and 1:2, respectively.46 Fig. 37. Room-temperature micro-PL spectra of undoped ZnO and assynthesized Cu doped ZnO nanoparticle sheets in Fig. 60 (b) and (d) excited with a 325 nm laser beam, respectively..47 Fig. 38. SEM images of the as-fabricated samples taken at different positions. (a) A schematic drawing of the experimental setup. (b) A FE-SEM image of pure ZnO nanowires grown without Cu in the source. (c, d, e) FE-SEM images of Zn1−xCuxO samples located at positions C, B, A, respectively. Insets (b’) and (c’) show the corresponding high-magnification SEM images....48 Fig. 39. EDX and XRD spectra. (a) EDX and (b) XRD spectra of undoped ZnO and Zn1−xCuxO samples with the Cu content of 7%, 18%, and 33%.....49 Fig. 40. XPS spectra. High-resolution XPS spectra of (a) Zn 2p, (b) O 1s, and (c) Cu 2p in micro-cross structures of Zn0.67Cu0.33O. .........50 Fig. 41. PL spectra of undoped ZnO and Zn1−xCuxO samples with the Cu contents of 7%, 18%, and 33%......51 Fig. 42. Infra-red photoacoustic spectrum for [Cu(acac)2]. ....54 Fig. 43. Ellipsoid plot (50% probability level) of [Cu(acac)2]....55 Fig. 44. Packing view of [Cu(acac)2] drawn along the [001] direction. H atoms have been omitted, for clarity.......56 Fig. 45. Hydrogen bonds between two [Cu(acac)2] units...56 Fig. 46. Temperature dependence of cMT for [Cu(acac)2]. The insert shows 1/cM vs Temperature......57 Fig. 47. View of the molecular structure of [Cu0.31Ni0.69(C5H7O2)2]....60 Fig.48. (a) The molecular structure refinement and (b) optical image of C10 H14 Cu O4...67 Fig.49. (a) The molecular structure refinement and (b) optical image of C10H16O5Zn ...69 Fig. 50. Schematic of the synthesis of metal organic precersors [Znx/Cu1-x (acac)2] ...71 Fig. 51. Optical microscopy images of (a) CAA and (b) Z0.7C0.3AA. (c) SEM image of Z0.7C0.3AA. .......72 Fig. 52. TEM analysis of typical ZCAA needle-like products: (a) low magnification image, (b) medium magnification image of a thin area in (a), (c) high magnification image of a typical chain in (b).......73 Fig. 53. Proposed reactions for Z0.7C0.3AA formation...73 Fig. 54. EDX spectrum of Z0.7C0.3AA compound.....74 Fig. 55. FT-IR spectra of ZAA, CAA, and Z0.7C0.3AA in (a) 400-1000 cm-1, (b) 950-1800 cm-1.......75 Fig. 56. Mass fragments of Z0.7C0.3AA. ......77 Fig.57. Mass spectrum of Z0.7C0.3AA....78 Fig. 58. XPS spectra of Z0.7C0.3AA for (a) Zn 2p, (b) Cu 2p, (c) O 1s, and (d) C 1s..79 Fig. 59. XRD patterns of ZCAA complexes with Cu compositions of (a) ZAA, (b) CAA, (c) 10%, (d) 30%, and (e) 50%.....80 Fig. 60. Z0.7C0.3AA molecular packing diagrams: (a) molecular configuration (b,c,d) molecular packing into a unit cell view along the b and c direction respectively...83 Fig. 61. TGA results of Z0.55C0.45AA, Z0.65C0.35AA, Z0.80C0.20AA, Z0.85C0.15AA, Z0.90C0.10AA along with ZAA and CAA.....87 Fig. 62. Schematic of the growth sequence for growing Cu-doped ZnO nanorodsby hydrothermal method......89 Fig. 63. SEM images of hydrothermally grown (a) un-doped ZnO as well as (b) 1%, (c) 5% and (d) 8% Cu doped ZnO nanorods using home-made bimetallic metal-organic complexes as precursors..94 Fig. 64. (a) X-Ray Energy dispersive spectra of un-doped ZnO and Cu-doped ZnO nanorods of (1-10 at. %) Cu doping concentrations, (b) compare concentration of metal organic precursors and cu doped ZnO with real expect concentration. .............96 Fig. 65. (a) XRD patterns of un-doped and Cu-doped ZnO nanorods with various Cu concentrations from 1% to 10%, (at. %) (b) Comparing the first three most intense peaks between un-doped ZnO NRs, 5% and 8% Cu-doped ZnO NRs. ......98 Fig. 66. (a) compare lattice parameters a and c (a left and c right y axe), (b) compare lattice parameters a and c, (a, y axe and c x axe), (e) volume of Cu doped ZnO concentration (1-10 at %)...99 Fig. 67. (a) XRD patterns of un-doped and Cu-doped ZnO NRs with various Cu concentrations from 1% to 13%, (at. %) (b) Comparing intense peaks between 12% to 15% Cu-doped ZnO NRs..100 Fig. 68. Transmission electron microscopy study of as-synthesized 5% Cu-doped ZnO NRs. (a) Bright-field image at low magnification, (b) Selected-area diffraction pattern; (c) High-resolution TEM image of a single 5% Cu-doped ZnO NR. .....101 Fig. 69. XPS spectra of Cu-doped ZnO nanorods: (a) Zn2p, un-doped ZnO,5% and 8% Cu-doped ZnO, (b) O1s, un-doped ZnO,5% and 8% Cu-doped ZnO, (c) deconvolution of O1s 5% (d) Cu2p of CuxO, 5% and 8% Cu-doped ZnO for comparison, (e) deconvolution of Cu2p3/2 5%(f) Fraction of Cu+ and Cu+2 with Cu concentration in Cu-doped ZnO NRs.........104 Fig. 70. UV-vis absorption spectra of (a) MO alone, (b) ZnO NRs with MO, (c-e) 2%, 5%, 8 % Cu-doped ZnO NRs with MO upon light exposure as a function of irradiation time up to 120 minutes, (f) comparative analysis for photocatalytic degradation of Cu doped ZnO with variation in Cu doping concentration from 1- 10 %, (g) Degradation rate, D%, of MO derived from (a) to (c). and (h) relative concentration (Ct/C0) of MO as a function of the UV irradiation time during photocatalytic degradation (monitored for MO peak absorbance at 120 nm) in the absence (control) and presence of 5% Cu-doped ZnO NRs. ...108 Fig. 71. Analysis of room temperature photoluminescence spectra. (a) Full spectrum of ZnO NRs; (b) Full spectra of un-doped and doped ZnO NRs with various Cu concentration to 10%; (c, d) deconvolution of the defect emission of the 1%, 8% Cu-doped ZnO NRs into green/yellow and orange/red emission bands peaking at 540 nm(Cu+536 nm and Cu2+ 600 nm) and 570 nm (Cu+ 558 nm and Cu2+ 622 nm),1%, 8% Cu-doped ZnO NRs respectively (e) green/orange emission intensity with different Cu concentrations in the Cu-doped ZnO NRs; (f) Ratio of visible/UV intensity with different Cu concentrations in the Cu-doped ZnO NRs..111 List of Schem Schem 1.....32 Schem 2.......52 Schem 3........53 Scheme 4. ........53 Scheme 5. ........66 Scheme 6. ........68 List of Abbreviations CVD Chemical vapor deposition MOCVD Metalorganic chemical vapour deposition MBE Molecular beam epitaxy ALD Atomic layer deposition PLD Pulsed laser deposition VLS Vapor liquid solid VS Vapor solid TG/DTA Thermogravimetric/Differential thermal analysis XRD X- ray diffraction FESEM Field emission- scanning electron microscopy EDX Energy Dispersive X-ray Spectroscopy (EDX or EDS) FETEM Field emission- transmission electron microscopy FTIR Fourier transform infrared XPS X- ray photoelectron spectroscopy PL Photoluminescence NBE Near band edge emission acac acetylacetone phen phenanthroline PVP Polyvinyl pyrrolidone LED Light emitting diode GL Green luminescence RL Red luminescence MOPCS Metal organic precersurs

    1. T. T. Huong, L.T. Vinh, T. K. Anh, H. T. Khuyen, H. T. Phuong and L. Q. Minh, New J. Chem, 2014, 38, 2114
    2. J. Kim, G. T. Neumann, Ni. D. McNamara and J. C. Hicks, J. Mater. Chem A, 2014, 2, 14014
    3. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, Chem. Rev., 2012, 112, 1105-1125
    4. S. Chen, K. Li1, F. Zhao, L. Zhang, M. Pan, Y. Z. Fan, J. Guo, J. Shi and C. Y. Su, Nature Communications, 2016, 7, 13169
    5. P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill and M. J. Styles, Chem. Soc. Rev, 2014, 43, 5513
    6. Y. P. Zhu, T. Z. Ren and Z. Y. Yuan, New J. Chem, 2014, 38, 1905
    7. K. J. Chen, C. T. He, P. Q. Liao, Y. S. Wei, P. X. Zhang, W. Xue, W. X. Zhang, J. P. Zhang and X. M. Chen, New J. Chem, 2014, 38, 2002
    8. N. N. Shendo, A. Morsali, S. W. Joo, Materials Letters, 2014, 117, 31-33
    9. C. D. Chandler, C. Roger, M. J. H-Smith, Chem. Rev, 1993, 93, 1205-1241
    10. Z. Guo, J. K. Cheng, Z. Hu, M. Zhang, Q. Xu, Z. Kang and D. Zhao, RSC Adv, 2014, 4, 34221
    11. M. Baias, A. Lesage, S. Aguado, J. Canivet, V. M. Basle, N. Audebrand, D. Farrusseng, and L. Emsley, Angew. Chem. Int. Ed, 2015, 54, 1-7
    12. W. Li, Q. Meng, C. Zhang, and G. Zhang, Chem. Eur. J, 2015, 21, 1-8
    13. H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu, and X. W. (D) Lou, Nature Communications, 2015, 6, 6512
    14. L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen and C. Y.Su, Nature Communications, 4, 1774
    15. R. G. Miller, S. Narayanaswamy, J. L. Tallon and S. Brooker, New J. Chem, 2014, 38, 1932
    16. S. Schlamp, K. Dankhoff and B. Weber, New J. Chem, 2014, 38, 1965
    17. M. S. Kwasny, L. Chancelier, S. Ng, H. G. Manyar, C. Hardacre and P. Nockemann, Dalton Trans, 2012, 41, 219
    18. A. Abherve, J. M. C. Juan, M. C. Leon, E. Coronado, J. Boonmak and S. Youngme, New J. Chem, 2014, 38, 2105
    19. J. Aguilo , A. Naeimi, R. Bofill, H. M. Bunz, A. Llobet, L. Escriche, X. Sala and M. Albrecht, New J. Chem, 2014, 38, 1980
    20. L. Xu, J. Pan, J. Dai, Z. Cao, H. Hang, X. Li and Y. Yan, RSC Advances, 2012, 2, 5571-5579
    21. F. N. Shi, F. A. A. Paz, P. R. Claro and J. Rocha, Chem. Commun, 2013, 49, 11668
    22. M. A. Subhan, T. Ahmed, R. Awal, R. Makioka, H. Nakata, T. T. Pakkanen, M. Suvanto, B. M. Kim, Journal of Luminescence, 2014, 146, 123-127
    23. A. Ahmed, M. Forster, R. Clowes, P. Myers and H. Zhang, Chem. Commun, 2014, 50, 14314
    24. Y. Ni, Y. Zhu and X. M, Dalton Trans, 2011, 40, 3689
    25. P. Sundberg and M. Karppinen, Beilstein J. Nanotechnol, 2014, 5, 1104-1136.
    26. L. B. Hamdy, P. R. Raithby, L. H. Thomas and C. C. Wilson, New J. Chem, 2014, 38, 2135
    27. A. Rousset, Journal of Materials Science, 1986, 21, 3111-3115
    28. Y. Geng, C. Fiolka, K. Kramer, J. Hauser, V. Laukhin, S. Decurtins and S. X. Liu, New J. Chem, 2014, 38, 2052
    29. U. Diaz, M. Boronat and A. Corma, Proc. R. Soc. A, 2012, 468, 1927-1954
    30. D. Chakraborti, J. Narayan and J. T. Prater, Appl. Phys. Lett, 2007, 90, 062504
    31. O. Lupan, T. Pauporté, B. Viana, V. V. Ursaki, I. M. Tiginyanu, V. Sontea, and L. Chow, J. Nano Electron. Optoelectron, 2012, 7, 712-718
    32. L. Chow, O. Lupan, G. Chai, H. Khallaf, L. K. Ono, B. Roldan Cuenya, I. M. Tiginyanu, V. V. Ursakif, V. Sontea, A. Schulte, Sensors and Actuators A, 2013, 189, 399-408
    33. Y. Badr, M. A. Mahmoud, Journal of Physics and Chemistry of Solids, 2007, 68, 413-419
    34. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb and S. Ogale, J. Mater. Chem, 2012, 22, 17055-17062
    35. M. C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou,Y. F. Yue, V. N. Nesterov, G. Qian and B. Chen, Chem. Commun, 2011, 47, 11715-11717
    36. J. Kaur , S. Bansal , S. Singhal, Physica B, 2013, 416, 33-38
    37. C. Fauteux, R. Longtin, J. Pegna and D. Therriault, Inorganic Chemistry, 2007, 46, 26, 11036-11046
    38. B. Weintraub, Z. Zhou, Y. Li and Y. Deng, Nanoscale, 2010, 2, 1573-1587
    39. Y. C. Chang, H. W. Wu, H. L. Chen, W. Y. Wang and L. J. Chen, J. Phys. Chem. C, 2009, 113, 14778-14782
    40. M. Shuai, L. Liao, H. B. Lu, L. Zhang, J. C. Li and D. J. Fu, J. Phys. D: Appl. Phys, 2008, 41, 135010
    41. G. Z. Xing, J. B. Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. P. Li, S. J. Wang, J. Ding, T. C. Sum, C. H. Al. Huan and T. Wu, Adv. Mater, 2008, 20, 3521-3527
    42. A. K. Patra, E. Bill, E. Bothe, K. Chlopek, F. Neese, T. Weyhermuller, K. Stobie, M. D. Ward, J. A. M. Cleverty and K. Wieghardt, Inorganic Chemistry, 2006, 45, 7877-7890.
    43. S. Y. Gao, H. D. Li , J. J. Yuan, Y. A. Li, X. X. Yang, J. W. Liu, Applied Surface Science, 2010, 256, 2781-2785
    44. J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, L. C. Chen, Appl. Phys. Lett, 2002, 81, 1312.
    45. A. Umar, S. Lee, Y. H. Im, Y. B. Hahn, Nanotechnology, 2005, 16, 2462.
    46. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater, 2009, 10, 013001
    47. S. Xu and Z. L. Wang, Nano Res, 2011, 4 , 1013-1098
    48. R. C. Wanga, H. Y. Lin, Materials Chemistry and Physics, 2011, 125, 263-266
    49. C. M. Chang, M. H. Hon, I. C. Leu, Sensors and Actuators B, 2010, 151, 15-20
    50. H. Ye, A. Tang, L. Huang, Y. Wang, C. Yang, Y. Hou, H. Peng, F. Zhang, and F. Teng, Langmuir, 2013, 29, 8728-8735
    51. H. Zhu, D. Han, Z. Meng, D. Wu, C. Zhang, Nanoscale Research Letters, 2011, 6,181
    52. E. Hosono, S. Fujihara, T. Kimura, and H. Imai, Journal of Colloid and Interface Science, 2004, 272, 391-398
    53. G. Murugadoss, J. Mater. Sci. Technol, 2012, 28, 587-593.
    54. D. Xu, D. Fan and W. Shen, Nanoscale Research Letters, 2013, 8, 46
    55. Y. Wang, K. Yu, H. Yin, C. Song, Z. Zhang, S. Li, H. Shi, Q. Zhang, B. Zhao, Y. Zhang, and Z. Zhu, J. Phys. D: Appl. Phys, 2013, 46, 175303.
    56. C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, Journal of Hazardous Materials, 2010, 176, 807-813
    57. P. Tonto, O. Mekasuwandumrong, S. Phatanasri, V. Pavarajarn, P. Praserthdam, Ceramics International, 2008, 34, 57-62
    58. C. X. Xu, X. W. Sun, X. H. Zhang, L. Ke and S. J. Chua, Nanotechnology, 2004, 15, 856–861
    59. M. Babikier, D. Wang, J. Wang, Q. Li, J. Sun, Y. Yan, Q. Yu and S. Jiao, Babikier et al, Nanoscale Research Letters, 2014, 9, 199
    60. M. Mukhtar, L. Munisa, R. Saleh, Materials Sciences and Applications, 2012, 3, 543-551
    61. B. Ghosh, M. Sardar and S. Banerjee, J. Phys. D: Appl. Phys, 2013, 46, 135001
    62. M. Pashchanka, R. C. Hoffmann, A. Gurlo, J. C. Swarbrick, J. Khanderi, J. Engstler, A. Issanin and J. J. Schneider, Dalton Trans, 2011, 40, 4307
    63. W. L. Ong, H. Huang, J. Xiao, K. Zeng and G. W. Ho, Nanoscale, 2014, 6, 1680
    64. J. Kulesza, B. S. Barrosb, S. A. Júniora, Coord. Chem. Rev, 2013, 257, 2192-2212
    65. M. S. Raghavan, P. Jaiswal, N. G. Sundaram , S. A. Shivashankar, Polyhedron, 2014, 70, 188-193
    66. V. M. Manikandamathavan, T. Weyhermüller, R. P. Parameswari, M. Sathishkumar, V. Subramanian, B. U. Nair, Dalton Trans, 2014, 43, 13018-13031
    67. W. Xia, B. Qiu, D. Xia and R. Zou, Scientfic Reports, 2013, 3, 1935
    68. D. Dey, S. Ghosh, D. Chopra, J Chem Crystallogr, 2014, 44, 131-142
    69. P. Munshi, B. W. Skelton, J. J. McKinnon and M. A. Spackman, Cryst Eng Comm, 2008, 10, 197–206
    70. H. F. Garces, A. E. Espinal, S. L. Suib, J. Phys. Chem, 2012, 116, 8465-8474
    71. S. F. Tayyari, T. Bakhshi, S. J. Mahdizadeh , S. Mehrani, R. E. Sammelson, Journal of Molecular Structure, 2009, 938, 76-81
    72. M. Suwalsky, B. Ungerer, F. Villena, B. Norris, H. Chdenas, P. Zatta, Journal of Inorganic Biochemistry, 1999, 75, 263-268
    73. U. A. Jayasooriya, J. N. T. Peck, J. E. Barclay, S. M. Hardy, A. I. Chumakov, D. J. Evans, C. J. Pickett, V. S. Oganesyan, Chemical Physics Letters, 2011, 518, 119-123
    74. R. A. Ligabue, A. L. Monteiro, R. F. D. Souza, M. O. D. Souza, Journal of Molecular Catalysis A: Chemical, 1998, 130, 101-105
    75. C. Pereira, J. F. Silva, A. M. Pereira, J. P. Araujo, G. Blanco, J. M. Pintado and C. Freire, Catalo. Sci. Technol, 2011, 1, 784-793
    76. L. S. von Chrzanowski, M. Lutz and A. L. Spek, Acta Cryst, 2007, C63, 283-288
    77. Y. Moreno, R. Arrue, R. Saavedra, J-Ypivan, O. Pena, T. Roisnell, Chil. Chem. Soc, 2013, 58, 4
    78. M. Shahid, M. Hamid, M. Mazhar, M. A. Malik and J. Raftery, Acta Cryst, 2010, E66, 949
    79. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, X. Liu, Chem. Soc. Rev, 2014, 43, 3259-3302
    80. M. Baibarac, I. Baltog, I. Smaranda, M. Scocioreanu and S. Lefrant, J. Mol. Struct, 2011, 985, 211-218.
    81. R. Rooydell, R. C. Wang, S. Brahma, F. Ebrahimzadeh, and C. P. Liu, Dalton Trans, 2015, 44, 7982-7990
    82. S. Y. Pung, C. S. Ong, K. M. Isha and M. H. Othman, Sains Malaysiana, 2014, 43, 273-281
    83. S. Tuzemen , E. Gur, Optical Materials, 2007, 30, 292-310
    84. A. Janotti and C. G. V. D. Walle, Rep. Prog. Phys, 2009, 72, 126501
    85. R. Rooydell, S. Brahma, R. C. Wang, M. R. Modaberi, F. Ebrahimzadeh, C. P. Liu, Journal of Alloys and Compounds, 2017, 691, 936-945

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE