| 研究生: |
雷光夏 Rooydell, Reza |
|---|---|
| 論文名稱: |
含鋅混合金屬有機前驅物和衍生摻雜氧化鋅奈米結構之合成及在氣體感應和光催化劑之應用 Zn-containing Hybrid Metal Organic Precursores and Derived Doped ZnO Nanostructures: Synthesis Properties and Application in Gas Sensing and Photocatalyst |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 外文關鍵詞: | Metal Organic Precursors, Doped ZnO Nanostructure |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A series of Metal Organic precursors (MOPs) were synthesized, structure determination found out metal-ligand complex follows our proposal. The main objective of this study was to synthesize and characterize precursors that are capable of producing zinc/copper precursors with varity ratio of zinc/copper, the researcher studied Cu doped ZnO via these precursors by thin films and chemical vapor deposition (CVD). Metal Organic Precursors (MOPs) are often volatile enough to be useful as precursors of the metals in vapor phase deposition process, e.g. chemical vapor deposition (CVD). MOPs materials have been a focus of researchers for their applications as molecular storage, molecular sensing, catalysis, asymmetric synthesis and host materials. MOPs represent a promising new class of crystalline solids because they exhibit large pore volumes, high surface areas, permanent porosity, high thermal stability, and feature open channels with tunable dimensions and topology. In this study we investigated the design, synthesis, and structures of a new family of MOPs. Here we present our effort in continuing MOPs precursors design and synthesis to expand our knowledge about MOPs family.
In chapter 1, MOPs precursors and metals doped ZnO with the application are introduced. In chapter 2, we synthesized organic hybrid novel metal mixed compounds of bis (acetylacetonato κ-O, O') [zinc (II)/copper (II)]. Taking C10H14O4Zn0.7Cu0.3 (Z0.7C0.3AA) as an example, the crystals are composed of Z0.7C0.3AA units and uncoordinated water molecules. Single-crystal X-ray diffraction results show that the complex Z0.7C0.3AA crystallizes in the monoclinic system, space group P21/n. The unit cell dimensions are a = 10.329(4) Å, b = 4.6947(18) Å, and c = 11.369(4) Å; the angles are α = 90°, β = 91.881(6) °, and γ = 90°, the volume is 551.0(4) Å3, and Z = 2. In this process, the M (II) ions of Zn and Cu mix and occupy the centers of symmetrical structure units, which are coordinated to two ligands. The measured bond lengths and angles of O-M-O vary with the ratio of metal species over the entire series of the synthesized complexes. The chemistry of the as-synthesized compounds has been characterized using infrared spectroscopy, mass spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis, and the morphology of the products has been characterized using scanning electron microscopy. The thermal decomposition of the Z0.7C0.3AA composites measured by thermo gravimetric analysis suggests that these complexes are volatile. The thermal characteristics of these complexes make them attractive precursors for metal organic chemical vapor deposition.
Chapter 3 summarizes the doping process Cu doped ZnO by these precursors series (Cu 1-10 at%). Bis (acetylacetonato κ-O, O') [zinc (II)/copper (II)] Hybrid Organic-inorganic Complexes. The species that we were able to control the amount of the percentage of this reaction indicate that is not a simple formation but possibly proceeds control amount of hybrid precursors to controllable of Cu(I) and Cu(II) in doping process. The second class that we attempted to examine as zinc/copper precursors for XPS and PL chemical were the Cu(I), Cu(II) controllable. we studied the Photocatalyst of a series of these precursors (Cu 1-10 at%). Finally, in Chapter 4 we came up to the conclusion of this research.
In this research, we synthesized and Characterized a series of Bis (acetylacetonato κ-O, O') [zinc/copper] Hybrid Organic-inorganic Complexes as Solid Metal Organic Precursor, we provided an overview of interpenetration involved optical and magnetic properties in metal organic precursors (MOPs) or coordination organic materials. Successful approaches for controlling the interpenetration in MOPs also have been introduced and summarized. The formation of a complete solid solution between acetylacetonate (acac) complexes of zinc nitrate and copper nitrate, [(Zn1_xCux)(acac)2] has been investigated through the co-synthesis method. Well crystallized, single crystal diffraction SCD, EDX, XPS, analysis was fulfilled for each nominal value of x confirming.
The UV/Blue and green (near-white) emissions were found in photoluminescence spectra indicating the possibility to use the Cu doped ZnO Nano rods structures on ZnO substrate. Optical studies of the nanostructured copper doped zinc oxides showed the decrease in band gap with increasing content of the doping agent copper. The photocurrent action spectra illustrated that the enhanced photo activity of the Cu-doped ZnO Nano rods was mainly due to the improved visible photon harvesting achieved by Cu doping. These results may facilitate the use of transition metal ion-doped ZnO in other photo conversion applications, such as ZnO based dye-sensitized solar cells and magnetism-assisted photocatalytic systems. It is revealed from PL studies that the band-edge/UV-vis emission decreases, whereas, the visible emission is found to increase with increase of the doping concentration. The decrease in the band-edge emission can be attributed to the substitution of Zn by Cu ions in the ZnO lattice.
Finally, we synthesized Cu doped ZnO nanostrucyures by these series Hybrid Organic-inorganic precursors. We were able to control the amount of the percentage of this reaction indication that is not a simple formation but possibly proceeds control amount of hybrid precursors to controllable of Cu(I) and Cu(II) in doping process. the crystal structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), UV–vis spectrum, photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) are used to characterize the material properties.
1. T. T. Huong, L.T. Vinh, T. K. Anh, H. T. Khuyen, H. T. Phuong and L. Q. Minh, New J. Chem, 2014, 38, 2114
2. J. Kim, G. T. Neumann, Ni. D. McNamara and J. C. Hicks, J. Mater. Chem A, 2014, 2, 14014
3. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, Chem. Rev., 2012, 112, 1105-1125
4. S. Chen, K. Li1, F. Zhao, L. Zhang, M. Pan, Y. Z. Fan, J. Guo, J. Shi and C. Y. Su, Nature Communications, 2016, 7, 13169
5. P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill and M. J. Styles, Chem. Soc. Rev, 2014, 43, 5513
6. Y. P. Zhu, T. Z. Ren and Z. Y. Yuan, New J. Chem, 2014, 38, 1905
7. K. J. Chen, C. T. He, P. Q. Liao, Y. S. Wei, P. X. Zhang, W. Xue, W. X. Zhang, J. P. Zhang and X. M. Chen, New J. Chem, 2014, 38, 2002
8. N. N. Shendo, A. Morsali, S. W. Joo, Materials Letters, 2014, 117, 31-33
9. C. D. Chandler, C. Roger, M. J. H-Smith, Chem. Rev, 1993, 93, 1205-1241
10. Z. Guo, J. K. Cheng, Z. Hu, M. Zhang, Q. Xu, Z. Kang and D. Zhao, RSC Adv, 2014, 4, 34221
11. M. Baias, A. Lesage, S. Aguado, J. Canivet, V. M. Basle, N. Audebrand, D. Farrusseng, and L. Emsley, Angew. Chem. Int. Ed, 2015, 54, 1-7
12. W. Li, Q. Meng, C. Zhang, and G. Zhang, Chem. Eur. J, 2015, 21, 1-8
13. H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu, and X. W. (D) Lou, Nature Communications, 2015, 6, 6512
14. L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen and C. Y.Su, Nature Communications, 4, 1774
15. R. G. Miller, S. Narayanaswamy, J. L. Tallon and S. Brooker, New J. Chem, 2014, 38, 1932
16. S. Schlamp, K. Dankhoff and B. Weber, New J. Chem, 2014, 38, 1965
17. M. S. Kwasny, L. Chancelier, S. Ng, H. G. Manyar, C. Hardacre and P. Nockemann, Dalton Trans, 2012, 41, 219
18. A. Abherve, J. M. C. Juan, M. C. Leon, E. Coronado, J. Boonmak and S. Youngme, New J. Chem, 2014, 38, 2105
19. J. Aguilo , A. Naeimi, R. Bofill, H. M. Bunz, A. Llobet, L. Escriche, X. Sala and M. Albrecht, New J. Chem, 2014, 38, 1980
20. L. Xu, J. Pan, J. Dai, Z. Cao, H. Hang, X. Li and Y. Yan, RSC Advances, 2012, 2, 5571-5579
21. F. N. Shi, F. A. A. Paz, P. R. Claro and J. Rocha, Chem. Commun, 2013, 49, 11668
22. M. A. Subhan, T. Ahmed, R. Awal, R. Makioka, H. Nakata, T. T. Pakkanen, M. Suvanto, B. M. Kim, Journal of Luminescence, 2014, 146, 123-127
23. A. Ahmed, M. Forster, R. Clowes, P. Myers and H. Zhang, Chem. Commun, 2014, 50, 14314
24. Y. Ni, Y. Zhu and X. M, Dalton Trans, 2011, 40, 3689
25. P. Sundberg and M. Karppinen, Beilstein J. Nanotechnol, 2014, 5, 1104-1136.
26. L. B. Hamdy, P. R. Raithby, L. H. Thomas and C. C. Wilson, New J. Chem, 2014, 38, 2135
27. A. Rousset, Journal of Materials Science, 1986, 21, 3111-3115
28. Y. Geng, C. Fiolka, K. Kramer, J. Hauser, V. Laukhin, S. Decurtins and S. X. Liu, New J. Chem, 2014, 38, 2052
29. U. Diaz, M. Boronat and A. Corma, Proc. R. Soc. A, 2012, 468, 1927-1954
30. D. Chakraborti, J. Narayan and J. T. Prater, Appl. Phys. Lett, 2007, 90, 062504
31. O. Lupan, T. Pauporté, B. Viana, V. V. Ursaki, I. M. Tiginyanu, V. Sontea, and L. Chow, J. Nano Electron. Optoelectron, 2012, 7, 712-718
32. L. Chow, O. Lupan, G. Chai, H. Khallaf, L. K. Ono, B. Roldan Cuenya, I. M. Tiginyanu, V. V. Ursakif, V. Sontea, A. Schulte, Sensors and Actuators A, 2013, 189, 399-408
33. Y. Badr, M. A. Mahmoud, Journal of Physics and Chemistry of Solids, 2007, 68, 413-419
34. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb and S. Ogale, J. Mater. Chem, 2012, 22, 17055-17062
35. M. C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou,Y. F. Yue, V. N. Nesterov, G. Qian and B. Chen, Chem. Commun, 2011, 47, 11715-11717
36. J. Kaur , S. Bansal , S. Singhal, Physica B, 2013, 416, 33-38
37. C. Fauteux, R. Longtin, J. Pegna and D. Therriault, Inorganic Chemistry, 2007, 46, 26, 11036-11046
38. B. Weintraub, Z. Zhou, Y. Li and Y. Deng, Nanoscale, 2010, 2, 1573-1587
39. Y. C. Chang, H. W. Wu, H. L. Chen, W. Y. Wang and L. J. Chen, J. Phys. Chem. C, 2009, 113, 14778-14782
40. M. Shuai, L. Liao, H. B. Lu, L. Zhang, J. C. Li and D. J. Fu, J. Phys. D: Appl. Phys, 2008, 41, 135010
41. G. Z. Xing, J. B. Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. P. Li, S. J. Wang, J. Ding, T. C. Sum, C. H. Al. Huan and T. Wu, Adv. Mater, 2008, 20, 3521-3527
42. A. K. Patra, E. Bill, E. Bothe, K. Chlopek, F. Neese, T. Weyhermuller, K. Stobie, M. D. Ward, J. A. M. Cleverty and K. Wieghardt, Inorganic Chemistry, 2006, 45, 7877-7890.
43. S. Y. Gao, H. D. Li , J. J. Yuan, Y. A. Li, X. X. Yang, J. W. Liu, Applied Surface Science, 2010, 256, 2781-2785
44. J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, L. C. Chen, Appl. Phys. Lett, 2002, 81, 1312.
45. A. Umar, S. Lee, Y. H. Im, Y. B. Hahn, Nanotechnology, 2005, 16, 2462.
46. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater, 2009, 10, 013001
47. S. Xu and Z. L. Wang, Nano Res, 2011, 4 , 1013-1098
48. R. C. Wanga, H. Y. Lin, Materials Chemistry and Physics, 2011, 125, 263-266
49. C. M. Chang, M. H. Hon, I. C. Leu, Sensors and Actuators B, 2010, 151, 15-20
50. H. Ye, A. Tang, L. Huang, Y. Wang, C. Yang, Y. Hou, H. Peng, F. Zhang, and F. Teng, Langmuir, 2013, 29, 8728-8735
51. H. Zhu, D. Han, Z. Meng, D. Wu, C. Zhang, Nanoscale Research Letters, 2011, 6,181
52. E. Hosono, S. Fujihara, T. Kimura, and H. Imai, Journal of Colloid and Interface Science, 2004, 272, 391-398
53. G. Murugadoss, J. Mater. Sci. Technol, 2012, 28, 587-593.
54. D. Xu, D. Fan and W. Shen, Nanoscale Research Letters, 2013, 8, 46
55. Y. Wang, K. Yu, H. Yin, C. Song, Z. Zhang, S. Li, H. Shi, Q. Zhang, B. Zhao, Y. Zhang, and Z. Zhu, J. Phys. D: Appl. Phys, 2013, 46, 175303.
56. C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, Journal of Hazardous Materials, 2010, 176, 807-813
57. P. Tonto, O. Mekasuwandumrong, S. Phatanasri, V. Pavarajarn, P. Praserthdam, Ceramics International, 2008, 34, 57-62
58. C. X. Xu, X. W. Sun, X. H. Zhang, L. Ke and S. J. Chua, Nanotechnology, 2004, 15, 856–861
59. M. Babikier, D. Wang, J. Wang, Q. Li, J. Sun, Y. Yan, Q. Yu and S. Jiao, Babikier et al, Nanoscale Research Letters, 2014, 9, 199
60. M. Mukhtar, L. Munisa, R. Saleh, Materials Sciences and Applications, 2012, 3, 543-551
61. B. Ghosh, M. Sardar and S. Banerjee, J. Phys. D: Appl. Phys, 2013, 46, 135001
62. M. Pashchanka, R. C. Hoffmann, A. Gurlo, J. C. Swarbrick, J. Khanderi, J. Engstler, A. Issanin and J. J. Schneider, Dalton Trans, 2011, 40, 4307
63. W. L. Ong, H. Huang, J. Xiao, K. Zeng and G. W. Ho, Nanoscale, 2014, 6, 1680
64. J. Kulesza, B. S. Barrosb, S. A. Júniora, Coord. Chem. Rev, 2013, 257, 2192-2212
65. M. S. Raghavan, P. Jaiswal, N. G. Sundaram , S. A. Shivashankar, Polyhedron, 2014, 70, 188-193
66. V. M. Manikandamathavan, T. Weyhermüller, R. P. Parameswari, M. Sathishkumar, V. Subramanian, B. U. Nair, Dalton Trans, 2014, 43, 13018-13031
67. W. Xia, B. Qiu, D. Xia and R. Zou, Scientfic Reports, 2013, 3, 1935
68. D. Dey, S. Ghosh, D. Chopra, J Chem Crystallogr, 2014, 44, 131-142
69. P. Munshi, B. W. Skelton, J. J. McKinnon and M. A. Spackman, Cryst Eng Comm, 2008, 10, 197–206
70. H. F. Garces, A. E. Espinal, S. L. Suib, J. Phys. Chem, 2012, 116, 8465-8474
71. S. F. Tayyari, T. Bakhshi, S. J. Mahdizadeh , S. Mehrani, R. E. Sammelson, Journal of Molecular Structure, 2009, 938, 76-81
72. M. Suwalsky, B. Ungerer, F. Villena, B. Norris, H. Chdenas, P. Zatta, Journal of Inorganic Biochemistry, 1999, 75, 263-268
73. U. A. Jayasooriya, J. N. T. Peck, J. E. Barclay, S. M. Hardy, A. I. Chumakov, D. J. Evans, C. J. Pickett, V. S. Oganesyan, Chemical Physics Letters, 2011, 518, 119-123
74. R. A. Ligabue, A. L. Monteiro, R. F. D. Souza, M. O. D. Souza, Journal of Molecular Catalysis A: Chemical, 1998, 130, 101-105
75. C. Pereira, J. F. Silva, A. M. Pereira, J. P. Araujo, G. Blanco, J. M. Pintado and C. Freire, Catalo. Sci. Technol, 2011, 1, 784-793
76. L. S. von Chrzanowski, M. Lutz and A. L. Spek, Acta Cryst, 2007, C63, 283-288
77. Y. Moreno, R. Arrue, R. Saavedra, J-Ypivan, O. Pena, T. Roisnell, Chil. Chem. Soc, 2013, 58, 4
78. M. Shahid, M. Hamid, M. Mazhar, M. A. Malik and J. Raftery, Acta Cryst, 2010, E66, 949
79. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, X. Liu, Chem. Soc. Rev, 2014, 43, 3259-3302
80. M. Baibarac, I. Baltog, I. Smaranda, M. Scocioreanu and S. Lefrant, J. Mol. Struct, 2011, 985, 211-218.
81. R. Rooydell, R. C. Wang, S. Brahma, F. Ebrahimzadeh, and C. P. Liu, Dalton Trans, 2015, 44, 7982-7990
82. S. Y. Pung, C. S. Ong, K. M. Isha and M. H. Othman, Sains Malaysiana, 2014, 43, 273-281
83. S. Tuzemen , E. Gur, Optical Materials, 2007, 30, 292-310
84. A. Janotti and C. G. V. D. Walle, Rep. Prog. Phys, 2009, 72, 126501
85. R. Rooydell, S. Brahma, R. C. Wang, M. R. Modaberi, F. Ebrahimzadeh, C. P. Liu, Journal of Alloys and Compounds, 2017, 691, 936-945