簡易檢索 / 詳目顯示

研究生: 陳世宏
Chen, Shih-hung
論文名稱: 高強度混凝土三軸壓縮試驗技術與靜動態力學行為
Static and Dynamic Behavior of High Strength Concrete under Triaxial Compression Test
指導教授: 戴毓修
Tai, Yuh-Shiou
胡宣德
Hu, Hsuan-Teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 127
中文關鍵詞: 圍束效應分離式霍普金森桿法活性粉混凝土三軸壓縮
外文關鍵詞: confinement effect, SHPB, triaxial compression, RPC
相關次數: 點閱:134下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 活性粉混凝土是一新型具有高強度與高性能之混凝土材料,因其具有優異的性能,常應用於許多軍事結構體和特殊用途結構物上,故了解混凝土材料的力學行為將有助於結構物之分析。此外,混凝土材料在不同應變率和圍束效應作用下,皆會表現出不同的力學行為。有鑒於此,本研究利用三軸壓縮試驗對活性粉混凝土分別進行靜態與動態之試驗。

    研究結果顯示,利用側向包覆材料對混凝土試體提供圍束效應,再藉由外部應變片訊號量測與理論推導,可以了解混凝土試體在多軸應力狀態下之靜態與動態力學行為。在靜態試驗部份,針對不同加載速率、不同鋼纖維含量與不同包覆材料之厚度進行試驗,並提出三軸試驗下之強度預測公式;在動態試驗部份,利用分離式霍普金森桿法對活性粉混凝土在不同衝擊速度和不同包覆材料之厚度進行試驗,並探討材料之力學性能。

    最後,將活性粉混凝土受圍束效應下靜態與動態試驗結果做完整地歸納整理,以供未來相關的學術研究以及工程應用上之參考。

    Reactive powder concrete (RPC) is a new type with high strength and high performance concrete material. It’s used to many military structures and special purpose construction, because it has excellent performance. There are many helps for structure analysis to understand the mechanical behavior of RPC. In addition, the concrete material under the different strain rates and confinement effects, the behavior of mechanics is obviously different. Accordingly, this study examines the static and dynamic characteristics of reactive powder concrete under triaxial compression test.
    Experimental results, it will understand the static and dynamic mechanical behavior under multiaxial stress by using the lateral confined materials to provide the confinement effect and measuring the external strain gage signal. In static part, there are three tests for RPC in different strain rates, different steel fiber volume fractions and different lateral confined material thickness, and find the predict formula of strength for under triaxial compression. In dynamic part, it understands the mechanical performances by using spilt-Hopkinson pressure bar (SHPB) to test RPC that is under different impact velocities and different lateral confined material thickness.
    Finally, the mechanical behavior of the reactive powder concrete in confinement effect under the static and dynamic loading is summed up completely and the results of this study can be utilized as a reference in research.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號對照表 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 RPC簡述 2 1.2.2 RPC研究概況 4 1.2.3 混凝土材料之動態試驗 7 1.2.3.1 爆炸試驗 8 1.2.3.2 投射體撞擊試驗 8 1.2.3.3 落重試驗 8 1.2.3.4 擺錘撞擊試驗 9 1.2.3.5 平板撞擊試驗 9 1.2.3.6 分離式霍普金森壓力桿撞擊試驗 10 1.2.4 混凝土材料之三軸試驗 10 1.3 研究內容與論文架構 11 第二章 混凝土的力學行為 17 2.1 應力 17 2.1.1 應力向量 17 2.1.2 應力之柯西公式 18 2.1.3 應力張量的主應力與不變量 18 2.1.4 主軸剪應力與最大剪應力 19 2.1.5 應力偏差張量與不變量 20 2.1.6 八面體應力 21 2.2 混凝土的材料特性 23 2.2.1 單軸力學行為 23 2.2.2 雙軸力學行為 23 2.2.3 三軸力學行為 24 2.3 圍束混凝土 25 2.3.1 混凝土三軸壓縮作用 26 2.3.2 圍束形式 26 2.3.3 圍束理論分析 27 2.3.4 強度預測公式 27 2.3.5 破壞模式 30 第三章 試驗計劃 37 3.1 試驗目的 37 3.1.1 擬靜態單軸壓縮試驗 37 3.1.2 擬靜態三軸壓縮試驗 37 3.1.3動態三軸壓縮試驗 38 3.2 試驗材料 38 3.3 試體配比製作與編號 40 3.3.1 試體配比 40 3.3.2 製作步驟 40 3.3.3 試體編號 41 3.4 試體養護 42 3.5 試驗設備儀器 42 3.6 試驗數據處理方法 44 3.6.1 擬靜態單軸抗壓試驗 45 3.6.2 擬靜態三軸壓縮試驗 45 3.6.3 動態三軸壓縮試驗 46 第四章 擬靜態力學試驗 58 4.1 厚壁圓管彈塑性理論分析 58 4.1.1 基本推導 58 4.1.2 彈性階段 61 4.1.3 極限彈性階段 63 4.1.4 彈塑性階段 63 4.1.5 極限塑性階段 66 4.2 多軸應力狀態下核心混凝土之應力應變狀態 67 4.3 擬靜態單軸抗壓試驗結果與討論 69 4.3.1 抗壓強度 69 4.3.2 峰值應變 70 4.3.3 彈性模數與波松比 70 4.4擬靜態三軸壓縮試驗結果與討論 71 4.4.1 不同加載速率之變化 71 4.4.2 不同鋼纖維含量之變化 72 4.4.3 不同圓管厚度之變化 73 4.4.4 強度預測公式 75 4.4.5 試驗結果 76 第五章 動態力學試驗 91 5.1 SHPB分離式霍普金森桿試驗法 91 5.1.1 測試原理 91 5.1.2 彈性圓桿中之一維波傳理論 92 5.1.3 波散效應之影響 95 5.2 動態三軸壓縮試驗討論與結果 97 5.2.1 不同衝擊速度下徑向應力之變化 98 5.2.2 不同衝擊速度下動態強度之變化 98 5.2.3 不同衝擊速度下應變率之變化 99 5.2.4 不同衝擊速度下材料參數之變化 100 5.2.5 試驗結果 101 第六章 結論與建議 114 6.1 結論 114 6.2 未來研究之建議 115 參考文獻 117 附錄 125 自述 127

    [1] Richard, P. and Cheyrezy, M., “Composite of Reactive Powder Concrete”, Cement and Concrete Research, Vol. 25, No. 7, pp. 1501-1511, 1995。
    [2] Dugat, J., Roux, N. and Bernier, G., “Mechanical Properties of Reactive Powder Concretes”, Materials and Structures, Vol. 29, No. 5, pp. 233-240, 1996。
    [3] Bonneau, O., Lachemi, M. and Dallaire, E., “Mechanical Properties and Durability of Two Industrial Reactive Powder Concrete”, ACI Materials Journal, Vol. 94, No. 4, pp. 286-290, 1997。
    [4] 陳振川,苗伯霖,姚錫齡,林進榮,詹穎雯,「超高強高性能混凝土配比及性質研究」,財團法人台灣營建研究院,1997。
    [5] 李介充,「溫度製程對超高強高性能混凝土力學性質影響研究」,國立台灣大學土木工程研究所碩士論文,台北,1998。
    [6] 廖基良,「活性粉混凝土配比本土化及微觀物理性質之研究」,國立台灣大學土木工學研究所碩士論文,台北,1998。
    [7] 謝孟翰,「超高強高性能混凝土之衝擊力學性質研究」,國立台灣大學土木工程學研究所碩士論文,台北,1999。
    [8] 譚業成,「活性粉混凝土力學行為之研究」,國立台灣大學土木工程學研究所碩士論文,台北,2000。
    [9] 朱書賢,「鋼纖維與活性粉混凝土間界面性質研究」,國立台灣大學土木工程學研究所碩士論文,台北,2000。
    [10] 何曜宇,「活性粉混凝土破壞行為之研究」,國立台灣大學土木工程學研究所碩士論文,台北,2000。
    [11] 盧凱偉,「超高強活性粉混凝土高壓高溫製程之研究」,國立台灣大學土木工程學研究所碩士論文,台北,2001。
    [12] 鄭瑞濱,「活性粉混凝土構件之工程性質研究」,國立臺灣大學土木工程學研究所博士論文,台北,2003。
    [13] 吳建興,「活性粉混凝土補強混凝土構件與耐久性能之測試研究」,朝陽科技大學營建工程系碩士論文,台中,2003。
    [14] 黃金源,「活性粉混凝土潛變與乾縮行為之研究」,臺灣大學土木工程學研究所碩士論文,台北,2004。
    [15] 廖文正,「活性粉混凝土薄版製程及韌性行為研究」,臺灣大學土木工程學研究所碩士論文,台北,2004。
    [16] 林淑蘭,「活性粉混凝土補強混凝土構件對火害與凍融之測試研究」,朝陽科技大學營建工程系碩士論文,台中,2005。
    [17] 林宜貞,「用活性粉混凝土補強的研究」,東南技術學院防災科技研究所碩士論文,台北,2006。
    [18] 陳彥睿,「活性粉混凝土複合板韌性消能行為研究與應用」,臺灣大學土木工程學研究所碩士論文,台北,2006。
    [19] 劉宣甫,「纖維強化活性粉混凝土板動態衝擊行為之研究」,國立成功大學土木工程學系碩士論文,台南,2007。
    [20] 蔡東良,「活性粉混凝土膠結粉體力學及凝結行為之基礎研究」,國立高雄第一科技大學營建工程所碩士論文,高雄,2007。
    [21] 洪健博,「圍束應力對活性粉混凝土在高應變率下的動態力學行為之分析」,國立成功大學土木工程研究所碩士論文,台南,2008。
    [22] 郭昱廷,「動態應變速率下活性粉混凝土之應力-應變行為」,國立高雄應用科技大學土木工程研究所碩士論文,高雄,2008。
    [23] 李俊偉,「以光纖量測技術探討活性粉混凝土板受衝擊力下之材料應變特性」,國立台灣大學土木工程研究所碩士論文,台北,2008。
    [24] 石立暐,「活性粉混凝土板於反覆加載下之內部應變光纖之量測」,國立台灣大學土木工程研究所碩士論文,台北,2008。
    [25] 宋佩瑄,「纖維混凝土實務」,現代營建雜誌社編印,1991。
    [26] 許哲嘉,「高性能混凝土之研究」,國立交通大學材料科學與工程研究所碩士論文,新竹,1995。
    [27] 何雁斌,「活性粉混凝土的配制技術與力學性能試驗研究」,福州大學結構工程碩士論文,2003。
    [28] 苗柏霖,「新型高性能超高牆建築材料-活性粉混凝土」,營建知訊 162期,1996。
    [29] 詹穎雯,「活性粉混凝土簡介」,水利土木科技資訊季刊 創刊號,1998。
    [30] Abrams, D.,“Effect of Rate of Application of Load on the Compressive Strength of Concrete”, Proc. 20th Annu. Meeting ASTM, West Conshohocken, pp. 366-374, 1917。
    [31] Bischoff, P. H. and Perry, S. H.,“Compression Behavior of Concrete at High Strain-Rates”, Materials and Structures, Vol. 24, pp. 425-450, 1991。
    [32] Velazco, G., Visalvanich, K. and Shah, S. P,“Fracture Behavior and Analysis of Fiber Reinforced Concrete Beams”, Cement and Concrete Research, Vol. 10, pp. 41-51, 1980。
    [33] Suaris, W. and Shah, S. P.,“Test Methods for Impact Resistance of Fiber Reinforced Concrete”, Research Report, U.S. Army Research Office, pp. 247-263, 1981。
    [34] Williams, M. S.,“Modeling of Local Impact Effects on Plain and Reinforced Concrete”, ACI Structural Journal, Vol. 91, No. 2, pp. 178-187, 1994。
    [35] 周承劉,「纖維混凝土板在低速撞擊荷載下之貫穿阻抗研究」,國防大學中正理工學院軍事工程研究所碩士論文,2002。
    [36] 劉權誼,「混凝土在撞擊荷載之行為研究」,國防大學中正理工學院軍事工程研究所碩士論文,2002。
    [37] John, R. and Shah, S. P.,“Constitutive Modeling of Concrete Under Impact Loading”, Impact: Effects of Fast Transient Loadings, pp. 37-65, 1988。
    [38] Anderson, W. F., Watson, A. J. and Armstrong, P. J.,“High Velocity Projectile Impact on Fiber-Reinforced Concrete”, Ibid, pp. 368-379, 1982。
    [39] Ramakrishna, G. and Sundarajan, T.,“Impact Strength of a Few Natural Fiber Reinforced Cement Mortar Slabs: a Comparative Study”, Cement & Concrete Composites, Vol. 27, No. 5, pp. 547-553, 2005。
    [40] Grote, D. L., Park, S. W. and Zhou, M.,“Dynamic Behavior of Concrete at High Strain Rates and Pressures: I. Experimental Charaterization”, International Journal of Impact Engineering, Vol. 25, No. 3, pp. 869-886, 2001。
    [41] Lindholm, U. S.,“Techniques in Metals Research”, Interscience Vol.5 Part 1, 1971。
    [42] Xie, J., Elwi, A. E. and MacGregor, J. G.,“Mechanical Properties of Three High-Strength Concretes Containing Silica Fume”, ACI Mat. J., Vol. 92, No. 2, pp. 135-145, 1995。
    [43] Farhad, A. and Li, Q.,“High-Strength Concrete Subjected to Triaxial Compression”, ACI Mat. J., Vol. 95 No. 6, pp. 747-755, 1998。
    [44] Kotsovos, M. D. and Perry, S. H.,“Behavior of Concrete Subjected to Passive Confinement”, Materials and Structures, Vol. 19, No. 4, pp. 259-264, 1986。
    [45] Forquin, P., Arias, A. and Zaera, R.,“An Experimental Method of Measuring the Confined Compression Strength of Geomaterials”, International Journal of Solids and Structures, pp. 4291-4317, 2007。
    [46] Chen, W. F. and Saleeb, A. F.,“Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling”, Elsevier B.V., 1994。
    [47] Sfer, D., Carol, I., Gettu, R. and Etse G.,“Study of the Behavior of Concrete under Triaxial Compression”, Journal of Engineering Mechanics, Vol. 128, No. 2, pp. 156-163, 2002。
    [48] 陳彥睿,「鋼管圍束高強度纖維混凝土於高溫力學行為研究」,國立台灣大學土木工程研究所碩士論文,台北,1999。
    [49] 陳高惇,「加勁UHPC圍束混凝土之單軸抗壓行為」,國立台灣大學土木工程研究所碩士論文,台北,2001。
    [50] Mirmiran, A. and Shahawy, M.,“Behavior of Concrete Columns Confined by Fiber Composites”, Journal Structure Engineering, Vol. 123, No. 5, pp. 583-590, 1997。
    [51] Richart, E., Brandtzaeg, A. and Brown, R. L.,“Failure of Plain and Spirally Reinforced Concrete in Compression”, University of Illinois Engineering Experimental Station, Champaign, 1929。
    [52] Balmer, G. G.,“Shearing Strength of Concrete Under High Triaxial Stress: Computation of Mohr's Envelope as a Curve”, Structural Reseal Laboratory Report SP-23, 1949。
    [53] Newman, K., and Newman, J. B.,“ Failure Theories and Design Criteria for Plain Concrete”, Solid Mechanical and Engrg. Des., Wiley Interscience, New York, N.Y., 1971。
    [54] Attard, M. M. and Setunge, S.,“Stress-Strain Relationship of Confined and Unconfined Concrete”, ACI Material Journal, Vol. 93 No. 5, pp. 432-442, 1996。
    [55] Legeron, F. and Paultre, P.,“Uniaxial Confinement for Normal- and High-Strength Concrete Columns”, Journal of Structural Engineering ASCE, Vol. 129, No. 2, pp. 241-252, 2003。
    [56] 過鎮海,「常溫和高溫下混凝土材料和結構的力學行為」,北京清華大學出版社,2006。
    [57] Chen, W. F. and Han, D.J.,“Plasticity for Structural Engineers”, Springer-Verlag pp197-204, 1988。
    [58] 徐秉業、劉信聲,「應用彈塑性力學」,北京清華大學出版社 pp183-202,1995。
    [59] Ma, Z. and Ravi-Chandar, K.,“Confined Compression: A Stable Homogeneous Deformation for Constitutive Characterization”, Experimental Mechanics, Vol. 40, No. 1, pp. 38-45, 2000。
    [60] Sfer, D., Carol, I., Gettu, R. and Etse G.,“Study of the Behavior of Concrete under Triaxial Compression”, Journal of Engineering Mechanics, Vol. 128, No. 2, pp.156-163, 2002。
    [61] Kolsky, H.,“An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading”, Proceedings of the Physical Society B62, pp. 676-700, 1949。
    [62] 戴毓修,許綜升,「分離式霍普金森桿法應用於活性粉混凝土動態力學性之研究」,中國土木水力工程學刊第19卷第3期,2007。
    [63] Zhao, H.,“Material Behavior Characterization using SHPB Techniques, test and simulations”, Computers and Structures 81, pp. 1301-1310, 2003。
    [64] Sasso, M., Newazb, G. and Amodio, D.,“Material Characterization at High Strain Rate by Hopkinson Bar Test and Finite Element Optimization”, Materials Science and Engineering A, pp. 289-300, 2007。
    [65] Bertholf, L. D. and Karnes, S. C.,“Two-Dimensional Analysis of the Split Hopkinson Pressure Bar System”, Mechanics of Physical and Solids, pp. 1-19, 1975。
    [66] Pochhammer, L.,“Uber die forthpflanzungsseschwindigkeiten kleiner schwingungen in einem unbegrenzten istropen kreiszylinder”, Journal of Rein Angewandte Mathematik, Vol. 11, pp. 226-324, 1876。
    [67] Lindholm, U. S.,“Some Experiments with the Split Hokinson Pressure Bar”, Journal of Mechanics of Physical and Solids, Vol. 12, pp. 317-335, 1964。
    [68] Davies, E. D. H. and Hunter, S. C.,“The Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar.”, Journal of Mechanics of Physical and Solids, Vol. 11, pp. 155-179, 1963。

    下載圖示 校內:立即公開
    校外:2009-07-22公開
    QR CODE