簡易檢索 / 詳目顯示

研究生: 張廷安
Chang, Ting-An
論文名稱: 基於紋理與深度一致性之立體匹配與深度強化方法
Efficient Stereo Matching and Depth Enhancement Algorithms by Using Texture and Depth Consistency
指導教授: 楊家輝
Yang, Jar-Ferr
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 135
中文關鍵詞: 立體匹配深度強化上採樣引導濾波器融合濾波器
外文關鍵詞: Stereo Matching, Depth Enhancement, Upsampling, Guided Filter, Fusion Filter
相關次數: 點閱:99下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三維(3D)視頻被廣泛認為是視覺媒體技術,使觀眾能夠感知場景的深度,最新三維視頻標準3D-HEVC需要精確的景深資訊。因此,對於未來3D廣播,如何在不同的場景條件下準確地估計和修補景深圖是一門值得研究的議題。本文提出了幾種方法來處理低分辨率情況下的景深估計和強化。此外,我們還討論了低分辨率情況下,紋理較弱、匹配精度較低、不連續性、光照差異和遮擋等情況下的不同變化。換句話說,這些問題可以在不使用視頻信號的超分辨率技術和多幀的情況下進行研究。
    為了整理低分辨率的景深估計和增強,我們提出了一種立體匹配演算法和三種景深強化系統,包括與三基色(TCC)普查和基於三重圖像精鍊的立體匹配演算法、先進的多邊濾波器(AMF)、一致性引導濾波器(CF)、有效引導上採樣(PGU)濾波器耦合自適應梯度融合(AGF)濾波器。
    實驗結果表明,本研究所提出之景深圖預測及強化系統與現有方法相比,我們所提出的方法在視覺和主觀度量上都表現出更好的質量,並且實現了視覺上可比較的結果。

    The three-dimensional (3D) video is widely recognized as a visual media technique which enables viewers to perceive the depth in a scene. Most 3D video standards, such as 3D-HEVC, all need depth information. For 3D broadcasting, how to accurately estimate the depth map and improve its performance the under different scene conditions becomes important. In this dissertation, several effective methods have been proposed to deal with the low resolution situation for depth estimation and enhancement. Moreover, we also discuss the different variations under the low resolution challenges such as weak texture, less matching accuracy, discontinuities, illumination difference and occlusions and so on. In other words, the problems can be successfully solved without using supper-resolution techniques and multiple frames from video signals.
    In order to realize low-resolution depth estimation and its enhancements, we proposed one stereo matching algorithm and three novel depth enhancement methods to become a complete depth estimation system. The complete system includes stereo matching with trinary cross color (TCC) census and triple image-based refinements, advanced multilateral filters (AMF), consistency-guided filter (CF), potency guided upsampling (PGU) filter coupled with adaptive gradient fusion (AGF) filter.
    Experimental results show that the proposed methods perform better qualities in both visual and subjective metrics than the classic methods and achieve visually comparable results to some time-consuming methods.

    Contents Pages 摘 要 I Abstract II 誌謝 IV Contents VI List of Tables IX List of Figures XI Chapter 1 Introduction 1 1.1. Research Background 1 1.2. Literature Review 2 1.3. Organization of Dissertation 4 Chapter 2 Related Work 6 2.1. Local Stereo Matching 6 2.2. Global Stereo Matching 7 2.3. Estimations and Applications of Depth Map 8 2.4. Bilateral/ Trilateral Filter 10 2.5. Guided Filter 10 2.6. Bilinear Interpolation 11 2.7. Bi-cubic Interpolation 12 2.8. New Edge-directed Interpolation 15 Chapter 3 Robust Stereo Matching with Trinary Cross Color Census and Triple Image-based refinements 18 3.1. Overview 18 3.2. Motivations 19 3.3. TCC Census and Triple Image-based Refinements 20 3.3.1. Observation with Trinary Cross Color (TCC) Census 20 3.3.1.1. Smooth Term Computations 26 3.3.1.2. Two-pass Cost Aggregation 28 3.3.1.3. Improved WTA for Disparity Estimation 29 3.3.2. Triple Image-based Disparity Refinements 30 3.3.2.1. Disparity Refinements 30 3.3.2.2. Final Disparity Map Refinement 32 3.4. Experimental Results 32 3.4.1. Performance Evaluation of Proposed Algorithm 33 3.4.2. Performance Comparisions 36 3.4.3. Discussions 43 3.5. Summary 43 Chapter 4 Robust Depth Enhancement and Optimization Based on Advanced Multilateral Filters 45 4.1. Overview 45 4.2. Motivations 46 4.3. Advanced Multilateral Filter 47 4.3.1. Principle of Advanced Multilateral Filter 48 4.3.2. Mold Matching for Image and Depth Map 51 4.3.3. Rotating Counsel Refinement for Depth Map 54 4.4. Experimental Results 55 4.4.1. Performance Evaluation of Depth Enhancement 55 4.4.2. Depth Enhancement with RCR Process 60 4.4.3. Performance Evaluation with Different Datasets 68 4.4.4. Analyses and Discussions 69 4.5. Summary 69 Chapter 5 Robust Depth Enhancement Based on Texture and Depth Consistency 70 5.1. Overview 70 5.2. Motivations 71 5.3. Consistency-guided Filter 72 5.3.1. Texture Similarity Hole Filling (TSHF) Stage 73 5.3.2. Texture Similarity Depth Enhancement (TSDE) Stage 76 5.3.3. Rotating Counsel Depth Refinement (RCDR) Stage 77 5.4. Experimental Results 79 5.4.1. Experiments on TSHF 79 5.4.2. Experiments on TSDE 81 5.4.3. Experiments on RCDR 84 5.5. Summary 92 Chapter 6 Precise Depth Map Upsampling and Enhancement Based on Edge-Preserving Fusion Filters 94 6.1. Overview 94 6.2. Motivations 95 6.3. Potency Guided Upsampling Filter and Adaptive Gradient Fusion Filter 96 6.3.1. Potency Guided Upsampling (PGU) Filter 97 6.3.2. Adaptive Gradient Fusion (AGF) Filter 100 6.4. Experimental Results 105 6.4.1. Performance Evaluation for PGU Filter 107 6.4.2. Performance Evaluation for AGF Filter 110 6.4.3. Performances of Synthesized Virtual Views 113 6.5. Summary 117 Chapter 7 Conclusions and Future Work 119 References 122 Publications 134

    References

    [1] Minoli, D. (2010). 3D Television (3DTV) Technology, Systems, and Deployment: Rolling Out the Infrastructure for Next-Generation Entertainment. CRC Press.
    [2] Aukstakalnis, S. (2016). Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for AR and VR. Addison-Wesley Professional.
    [3] Zhang, L., Vazquez, C., & Knorr, S. (2011). 3D-TV content creation: automatic 2D-to-3D video conversion. IEEE Transactions on Broadcasting, 57(2), 372-383.
    [4] Zhang, J., Wang, L. H., Li, D. X., & Zhang, M. (2011, October). High quality depth maps from stereo matching and ToF camera. In Proc. Soft Computing and Pattern Recognition (SoCPaR), 2011 International Conference of (pp. 68-72). IEEE.
    [5] IEEE Trans. Circuits and Systems for Video Technology, Special Issue on Augmented Video, 2015 [Online]. Available: http://tcsvt.polito.it/Call%20for%20Papers%20-%20TCSVT%20Special%20Issue%20on%20Augmented%20Video.pdf
    [6] Cho, H., Jung, S. U., & Jee, H. K. (2017, March). Real-time interactive AR system for broadcasting. In Proc. Virtual Reality (VR), 2017 IEEE (pp. 353-354). IEEE.
    [7] J.-F. Yang, H.-M. Wang and, A.-T. Chiang (2013), “2D Backwards Compatible Centralized Color-Depth Packing,”, Joint Collaborative Team on 3D Video Coding Extensions of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, the 6th Meeting: Document: JCT3V-F0087, Geneva, November 2013.
    [8] Michael, M., Salmen, J., Stallkamp, J., & Schlipsing, M. (2013, June). Real-time stereo vision: Optimizing semi-global matching. In Proc. Intelligent Vehicles Symposium (IV), 2013 IEEE (pp. 1197-1202). IEEE.
    [9] Michael, M., Salmen, J., Stallkamp, J., & Schlipsing, M. (2013, June). Real-time stereo vision: Optimizing semi-global matching. In Proc. Intelligent Vehicles Symposium (IV), 2013 IEEE (pp. 1197-1202). IEEE.
    [10] Jiao, J., Wang, R., Wang, W., Dong, S., Wang, Z., & Gao, W. (2014). Local stereo matching with improved matching cost and disparity refinement. IEEE MultiMedia, 21(4), 16-27.
    [11] Qu, Y., Jiang, J., Deng, X., & Zheng, Y. (2013). Robust local stereo matching under varying radiometric conditions. IET Computer Vision, 8(4), 263-276.
    [12] PMD Technologies [Online]. Available: http://www.pmdtec.com
    [13] MESA Imaging [Online]. Available: http://www.mesa-imaging.ch
    [14] Microsoft, Kinect [Online]. Available: http://www.xbox.com/en- US/kinect
    [15] Gokturk, S. B., Yalcin, H., & Bamji, C. (2004, June). A time-of-flight depth sensor-system description, issues and solutions. In Proc. Computer Vision and Pattern Recognition Workshop, 2004. CVPRW'04. Conference on (pp. 35-35). IEEE.
    [16] Foix, S., Alenya, G., & Torras, C. (2011). Lock-in time-of-flight (ToF) cameras: A survey. IEEE Sensors Journal, 11(9), 1917-1926.
    [17] Zhang, L., Shen, P., Zhang, S. E., Song, J., & Zhu, G. (2016, September). Depth enhancement with improved exemplar-based inpainting and joint trilateral guided filtering. In Proc. Image Processing (ICIP), 2016 IEEE International Conference on (pp. 4102-4106). IEEE.
    [18] Shin, Y., & Yoon, K. J. (2016). PatchMatch belief propagation meets depth upsampling for high-resolution depth maps. Electronics Letters, 52(17), 1445-1447.
    [19] Riemens, A. K., Gangwal, O. P., Barenbrug, B., & Berretty, R. P. (2009, January). Multistep joint bilateral depth upsampling. In Proc. Visual communications and image processing 2009 (Vol. 7257, p. 72570M). International Society for Optics and Photonics.
    [20] Chan, D., Buisman, H., Theobalt, C., & Thrun, S. (2008, October). A noise-aware filter for real-time depth upsampling. In Proc. Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications-M2SFA2 2008.
    [21] Jung, S. W. (2013). Enhancement of image and depth map using adaptive joint trilateral filter. IEEE Transactions on Circuits and Systems for Video Technology, 23(2), 258-269.
    [22] Farid, M. S., Lucenteforte, M., & Grangetto, M. (2014, October). Edge enhancement of depth based rendered images. In Proc. Image Processing (ICIP), 2014 IEEE International Conference on (pp. 5452-5456). IEEE.
    [23] Lin, Y. H., & Wu, J. L. (2011). A digital blind watermarking for depth-image-based rendering 3D images. IEEE transactions on Broadcasting, 57(2), 602-611.
    [24] Jiufei, X., Ming, X., Dongxiao, L., & Ming, Z. (2010, April). A new virtual view rendering method based on depth image. In Proc. Wearable Computing Systems (APWCS), 2010 Asia-Pacific Conference on (pp. 147-150). IEEE.
    [25] Vanetti, M., Gallo, I., & Binaghi, E. (2009). Dense two-frame stereo correspondence by self-organizing neural network. In Proc. Image Analysis and Processing–ICIAP 2009, 1035-1042.
    [26] Ohta, Y., & Kanade, T. (1985). Stereo by intra-and inter-scanline search using dynamic programming. IEEE Transactions on pattern analysis and machine intelligence, (2), 139-154.
    [27] Kim, J. C., Lee, K. M., Choi, B. T., & Lee, S. U. (2005, June). A dense stereo matching using two-pass dynamic programming with generalized ground control points. In Proc. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 1075-1082). IEEE.
    [28] Kellnhofer, P., Didyk, P., Ritschel, T., Masia, B., Myszkowski, K., & Seidel, H. P. (2016). Motion parallax in stereo 3D: Model and applications. ACM Transactions on Graphics (TOG), 35(6), 176.
    [29] Özkalaycı, B. O., & Alatan, A. A. (2014). 3D planar representation of stereo depth images for 3DTV applications. IEEE Transactions on Image Processing, 23(12), 5222-5232.
    [30] Shih, S. E., & Tsai, W. H. (2013). A Two-Omni-Camera Stereo Vision System With an Automatic Adaptation Capability to Any System Setup for 3-D Vision Applications. IEEE Transactions on Circuits and Systems for Video Technology, 23(7), 1156-1169.
    [31] Kim, J. C., Lee, K. M., Choi, B. T., & Lee, S. U. (2005, June). A dense stereo matching using two-pass dynamic programming with generalized ground control points. In Proc. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 1075-1082). IEEE.
    [32] Veksler, O. (2005, June). Stereo correspondence by dynamic programming on a tree. In Proc. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 384-390). IEEE.
    [33] Zhan, Y., Gu, Y., Huang, K., Zhang, C., & Hu, K. (2016). Accurate image-guided stereo matching with efficient matching cost and disparity refinement. IEEE Transactions on Circuits and Systems for Video Technology, 26(9), 1632-1645.
    [34] Kim, S. Y., Kim, M., & Ho, Y. S. (2013). Depth image filter for mixed and noisy pixel removal in RGB-D camera systems. IEEE Transactions on Consumer Electronics, 59(3), 681-689.
    [35] Shen, Y., Li, J., & Lü, C. (2014, October). Depth map enhancement method based on joint bilateral filter. In Proc. Image and Signal Processing (CISP), 2014 7th International Congress on (pp. 153-158). IEEE.
    [36] Wang, Y., Ortega, A., Tian, D., & Vetro, A. (2014, May). A graph-based joint bilateral approach for depth enhancement. In Proc. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on (pp. 885-889). IEEE.
    [37] Camplani, M., & Salgado, L. (2012). Efficient spatio-temporal hole filling strategy for Kinect depth maps. Three-Dimensional Image Processing (3DIP) and Applications, 8290.
    [38] Schmeing, M., & Jiang, X. (2015). Faithful disocclusion filling in depth image based rendering using superpixel-based inpainting. IEEE Transactions on Multimedia, 17(12), 2160-2173.
    [39] Oliveira, A., Fickel, G., Walter, M., & Jung, C. (2015, April). Selective hole-filling for depth-image based rendering. In Proc. Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on (pp. 1186-1190). IEEE.
    [40] Jiufei, X., Ming, X., Dongxiao, L., & Ming, Z. (2010, April). A new virtual view rendering method based on depth image. In Proc. Wearable Computing Systems (APWCS), 2010 Asia-Pacific Conference on (pp. 147-150). IEEE.
    [41] Faria, C., Erlhagen, W., Rito, M., De Momi, E., Ferrigno, G., & Bicho, E. (2015). Review of robotic technology for stereotactic neurosurgery. IEEE reviews in biomedical engineering, 8, 125-137.
    [42] Gioioso, G., Salvietti, G., Malvezzi, M., & Prattichizzo, D. (2013). Mapping synergies from human to robotic hands with dissimilar kinematics: an approach in the object domain. IEEE Transactions on Robotics, 29(4), 825-837.
    [43] Zufeng, Z., Youchun, X., & Junfeng, L. (2012, May). Design of intelligent vehicle control system of self-directed. In Proc. Control and Decision Conference (CCDC), 2012 24th Chinese (pp. 2748-2751). IEEE.
    [44] Cai, J. (2012). Integration of optical flow and dynamic programming for stereo matching. IET image processing, 6(3), 205-212.
    [45] Wang, H. M., Chen, Y. H., & Yang, J. F. (2009, June). A novel matching frame selection method for stereoscopic video generation. In Proc. Multimedia and Expo, 2009. ICME 2009. IEEE International Conference on (pp. 1174-1177). IEEE.
    [46] Mora, E. G., Jung, J., Cagnazzo, M., & Pesquet-Popescu, B. (2014). Initialization, limitation, and predictive coding of the depth and texture quadtree in 3D-HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 24(9), 1554-1565.
    [47] G. Tech, K. Wegner, Y. Chen, and S. Yea, “3D HEVC Test Model 3,” Document: JCT3VC1005, Geneva, 2013.
    [48] Ramachandra, V., Hirakawa, K., Zwicker, M., & Nguyen, T. (2011). Spatioangular prefiltering for multiview 3D displays. IEEE transactions on visualization and computer graphics, 17(5), 642-654.
    [49] Hsia, C. H. (2015). Improved depth image-based rendering using an adaptive compensation method on an autostereoscopic 3-D display for a Kinect sensor. IEEE Sensors Journal, 15(2), 994-1002.
    [50] Sheikh, Y. A., & Shah, M. (2008). Trajectory association across multiple airborne cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 361-367.
    [51] Hirschmuller, H. (2006). Stereo vision in structured environments by consistent semi-global matching. In Proc. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on (Vol. 2, pp. 2386-2393). IEEE.
    [52] Kang, S. B., Szeliski, R., & Chai, J. (2001). Handling occlusions in dense multi-view stereo. In Proc. Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on (Vol. 1, pp. I-I). IEEE.
    [53] Dinh, V. Q., Pham, C. C., & Jeon, J. W. (2016). Matching cost function using robust soft rank transformations. IET Image Processing, 10(7), 561-569.
    [54] Lu, J., Rogmans, S., Lafruit, G., & Catthoor, F. (2009). Stream-centric stereo matching and view synthesis: A high-speed approach on gpus. IEEE Transactions on Circuits and Systems for Video Technology, 19(11), 1598-1611.
    [55] Zhang, K., Lu, J., & Lafruit, G. (2009). Cross-based local stereo matching using orthogonal integral images. IEEE transactions on circuits and systems for video technology, 19(7), 1073-1079.
    [56] Hosni, A., Bleyer, M., Rhemann, C., Gelautz, M., & Rother, C. (2011, July). Real-time local stereo matching using guided image filtering. In Multimedia and Expo (ICME), 2011 IEEE International Conference on (pp. 1-6). IEEE.
    [57] Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International journal of computer vision, 47(1-3), 7-42.
    [58] Sun, J., Zheng, N. N., & Shum, H. Y. (2003). Stereo matching using belief propagation. IEEE Transactions on pattern analysis and machine intelligence, 25(7), 787-800.
    [59] Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on pattern analysis and machine intelligence, 23(11), 1222-1239.
    [60] Hirschmuller, H., & Scharstein, D. (2009). Evaluation of stereo matching costs on images with radiometric differences. IEEE transactions on pattern analysis and machine intelligence, 31(9), 1582-1599.
    [61] Humenberger, M., Engelke, T., & Kubinger, W. (2010, June). A census-based stereo vision algorithm using modified semi-global matching and plane fitting to improve matching quality. In Proc. Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on (pp. 77-84). IEEE.
    [62] Bae, K. R., Son, H. S., Hyun, J., & Moon, B. (2015, July). A census-based stereo matching algorithm with multiple sparse windows. In Proc. Ubiquitous and Future Networks (ICUFN), 2015 Seventh International Conference on (pp. 240-245). IEEE.
    [63] Fusiello, A., Roberto, V., & Trucco, E. (1997, June). Efficient stereo with multiple windowing. In Proc. Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on (pp. 858-863). IEEE.
    [64] Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., & Zhang, X. (2011, November). On building an accurate stereo matching system on graphics hardware. In Proc. Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on (pp. 467-474). IEEE.
    [65] Zabih, R., & Woodfill, J. (1994, May). Non-parametric local transforms for computing visual correspondence. In Proc. European conference on computer vision (pp. 151-158). Springer, Berlin, Heidelberg.
    [66] Middlebury Stereo Vision Page [Online]. Available: http://vision.middlebury.edu/stereo
    [67] Kim, D., Min, D., Oh, J., Jeon, S., & Sohn, K. (2009, February). Depth map quality metric for three-dimensional video. In Proc. Stereoscopic Displays and Applications XX (Vol. 7237, p. 723719). International Society for Optics and Photonics.
    [68] Zhang, L., Vazquez, C., & Knorr, S. (2011). 3D-TV content creation: automatic 2D-to-3D video conversion. IEEE Transactions on Broadcasting, 57(2), 372-383.
    [69] Smolic, A., & McCutchen, D. (2004). 3DAV exploration of video-based rendering technology in MPEG. IEEE Transactions on Circuits and Systems for Video Technology, 14(3), 348-356.
    [70] Wang, H. M., Huang, C. H., & Yang, J. F. (2010, May). Depth maps interpolation from existing pairs of keyframes and depth maps for 3D video generation. In Proc. Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on (pp. 3248-3251). IEEE.
    [71] Köppel, M., Müller, K., & Wiegand, T. (2016). Filling disocclusions in extrapolated virtual views using hybrid texture synthesis. IEEE Transactions on Broadcasting, 62(2), 457-469.
    [72] Shao, F., Yu, M., Jiang, G., Li, F., & Peng, Z. (2012). Depth map compression and depth-aided view rendering for a three-dimensional video system. IET signal processing, 6(3), 247-254.
    [73] Yang, T. C., Kuo, P. C., Liu, B. D., & Yang, J. F. (2013, November). Depth image-based rendering with edge-oriented hole filling for multiview synthesis. In Proc. Communications, Circuits and Systems (ICCCAS), 2013 International Conference on (Vol. 1, pp. 50-53). IEEE.
    [74] Heo, Y. S., Lee, K. M., & Lee, S. U. (2011). Robust stereo matching using adaptive normalized cross-correlation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4), 807-822.
    [75] Yang, N. E., Kim, Y. G., & Park, R. H. (2012, August). Depth hole filling using the depth distribution of neighboring regions of depth holes in the Kinect sensor. In Proc. Signal Processing, Communication and Computing (ICSPCC), 2012 IEEE International Conference on (pp. 658-661). IEEE.
    [76] Scharstein, D., & Pal, C. (2007, June). Learning conditional random fields for stereo. In Proc. Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on (pp. 1-8). IEEE.
    [77] Kerl, C., Sturm, J., & Cremers, D. (2013, May). Robust odometry estimation for RGB-D cameras. In Proc. Robotics and Automation (ICRA), 2013 IEEE International Conference on (pp. 3748-3754). IEEE.
    [78] Xie, J., Feris, R. S., & Sun, M. T. (2016). Edge-guided single depth image super resolution. IEEE Transactions on Image Processing, 25(1), 428-438.
    [79] Liu, M. Y., Tuzel, O., & Taguchi, Y. (2013). Joint geodesic upsampling of depth images. In Proc. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 169-176).
    [80] Yang, J., Ye, X., Li, K., Hou, C., & Wang, Y. (2014). Color-guided depth recovery from RGB-D data using an adaptive autoregressive model. IEEE transactions on image processing, 23(8), 3443-3458.
    [81] Cohen, M. F., Uyttendaele, M. T., Lischinski, D., & Kopf, J. (2011). U.S. Patent No. 7,889,949. Washington, DC: U.S. Patent and Trademark Office.
    [82] Lai, P., Tian, D., & Lopez, P. (2010, December). Depth map processing with iterative joint multilateral filtering. In Proc. Picture Coding Symposium (PCS), 2010 (pp. 9-12). IEEE.
    [83] Shan, H., Chien, W. D., Wang, H. M., & Yang, J. F. (2014, October). A homography-based inpainting algorithm for effective depth-image-based rendering. In Proc. Image Processing (ICIP), 2014 IEEE International Conference on (pp. 5412-5416). IEEE.
    [84] Fan, Y. C., Chen, Y. C., & Chou, S. Y. (2014). Vivid-DIBR Based 2D–3D Image Conversion System for 3D Display. Journal of Display Technology, 10(10), 859-870.
    [85] Ndjiki-Nya, P., Koppel, M., Doshkov, D., Lakshman, H., Merkle, P., Muller, K., & Wiegand, T. (2011). Depth image-based rendering with advanced texture synthesis for 3-D video. IEEE Transactions on Multimedia, 13(3), 453-465.
    [86] Chang, H., Yeung, D. Y., & Xiong, Y. (2004, June). Super-resolution through neighbor embedding. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on (Vol. 1, pp. I-I). IEEE.
    [87] Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological methodology, 13, 290-312.
    [88] Chang, T. A., & Yang, J. F. (2016, November). Enhancement of depth map using texture and depth consistency. In Proc. Region 10 Conference (TENCON), 2016 IEEE (pp. 1139-1142). IEEE.
    [89] Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), 629-639.
    [90] He, K., Sun, J., & Tang, X. (2013). Guided image filtering. IEEE transactions on pattern analysis and machine intelligence, 35(6), 1397-1409.
    [91] Pham, C. C., & Jeon, J. W. (2014). Efficient image sharpening and denoising using adaptive guided image filtering. IET Image Processing, 9(1), 71-79.
    [92] Criminisi, A., Sharp, T., Rother, C., & Pérez, P. (2010). Geodesic image and video editing. ACM Trans. Graph., 29(5), 134-1.
    [93] Yang, Q., Li, D., Wang, L., & Zhang, M. (2013, September). A novel guided image filter using orthogonal geodesic distance weight. In Proc. Image Processing (ICIP), 2013 20th IEEE International Conference on (pp. 1207-1211). IEEE.
    [94] Ko, S. J., & Lee, Y. H. (1991). Center weighted median filters and their applications to image enhancement. IEEE transactions on circuits and systems, 38(9), 984-993.
    [95] Ma, Z., He, K., Wei, Y., Sun, J., & Wu, E. (2013). Constant time weighted median filtering for stereo matching and beyond. In Proc. Proceedings of the IEEE International Conference on Computer Vision (pp. 49-56).
    [96] Dong, G., & Acton, S. T. (2007). On the convergence of bilateral filter for edge-preserving image smoothing. IEEE signal processing letters, 14(9), 617-620.
    [97] Guarnieri, G., Marsi, S., & Ramponi, G. (2006). Fast bilateral filter for edge-preserving smoothing. Electronics letters, 42(7), 396-397.
    [98] Su, Z., Luo, X., Deng, Z., Liang, Y., & Ji, Z. (2013). Edge-preserving texture suppression filter based on joint filtering schemes. IEEE Transactions on Multimedia, 15(3), 535-548.
    [99] Zhang, Q., Shen, X., Xu, L., & Jia, J. (2014, September). Rolling guidance filter. In Proc. European Conference on Computer Vision (pp. 815-830). Springer, Cham.
    [100] Scharstein, D., & Szeliski, R. (2003, June). High-accuracy stereo depth maps using structured light. In Proc. Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on (Vol. 1, pp. I-I). IEEE.
    [101] Middlebury database [Online]. Available: http://vision.middlebury.edu/stereo/data/
    [102] RGBD database [Online]. Available: https://rgbd-dataset.cs.washington.edu/
    [103] Kopf, J., Cohen, M. F., Lischinski, D., & Uyttendaele, M. (2007, August). Joint bilateral upsampling. In ACM Transactions on Graphics (ToG) (Vol. 26, No. 3, p. 96). ACM.
    [104] Ham, B., Min, D., & Sohn, K. (2015). Depth superresolution by transduction. IEEE Transactions on Image Processing, 24(5), 1524-1535.
    [105] Dai, L., Wang, H., Mei, X., & Zhang, X. (2013, November). Depth map upsampling via compressive sensing. In Proc. Pattern Recognition (ACPR), 2013 2nd IAPR Asian Conference on (pp. 90-94). IEEE.
    [106] Han, J., Farin, D., & de With, P. (2011). A mixed-reality system for broadcasting sports video to mobile devices. IEEE MultiMedia, 18(2), 72-84.
    [107] Merkle, P., Müller, K., Marpe, D., & Wiegand, T. (2016). Depth intra coding for 3D video based on geometric primitives. IEEE Transactions on Circuits and Systems for Video Technology, 26(3), 570-582.
    [108] Wang, H. M., Huang, C. H., & Yang, J. F. (2010, May). Depth maps interpolation from existing pairs of keyframes and depth maps for 3D video generation. In Proc. Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on (pp. 3248-3251). IEEE.
    [109] Lin, S., Ruimin, H., & Rui, Z. (2014). Depth similarity enhanced image summarization algorithm for hole-filling in depth image-based rendering. China Communications, 11(11), 60-68.
    [110] Shao, F., Yu, M., Jiang, G., Li, F., & Peng, Z. (2012). Depth map compression and depth-aided view rendering for a three-dimensional video system. IET signal processing, 6(3), 247-254.
    [111] Lei, J., Zhang, C., Fang, Y., Gu, Z., Ling, N., & Hou, C. (2015). Depth sensation enhancement for multiple virtual view rendering. IEEE Transactions on Multimedia, 17(4), 457-469.
    [112] Jung, I. L., Chung, T. Y., Sim, J. Y., & Kim, C. S. (2013). Consistent stereo matching under varying radiometric conditions. IEEE Transactions on Multimedia, 15(1), 56-69.
    [113] Wang, K., Zhang, G., & Bao, H. (2014). Robust 3D reconstruction with an RGB-D camera. IEEE Transactions on Image Processing, 23(11), 4893-4906.
    [114] Shen, Y., Li, J., & Lü, C. (2014, October). Depth map enhancement method based on joint bilateral filter. In Proc. Image and Signal Processing (CISP), 2014 7th International Congress on (pp. 153-158). IEEE.
    [115] Wang, Y., Ortega, A., Tian, D., & Vetro, A. (2014, May). A graph-based joint bilateral approach for depth enhancement. In Proc. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on (pp. 885-889). IEEE.
    [116] Zhang, B., & Allebach, J. P. (2008). Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE transactions on Image Processing, 17(5), 664-678.
    [117] Yang, N. E., Kim, Y. G., & Park, R. H. (2012, August). Depth hole filling using the depth distribution of neighboring regions of depth holes in the Kinect sensor. In Proc. Signal Processing, Communication and Computing (ICSPCC), 2012 IEEE International Conference on (pp. 658-661). IEEE.
    [118] Min, D., Lu, J., & Do, M. N. (2012). Depth video enhancement based on weighted mode filtering. IEEE Transactions on Image Processing, 21(3), 1176-1190.
    [119] Garcia, F., Aouada, D., Solignac, T., Mirbach, B., & Ottersten, B. (2013). Real-time depth enhancement by fusion for RGB-D cameras. IET Computer Vision, 7(5), 335-345.
    [120] Kim, K., Torii, A., & Okutomi, M. (2015). Joint estimation of depth, reflectance and illumination for depth refinement. In Proc. Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 1-9).
    [121] Wang, L., & Jung, C. (2014). Example-based video stereolization with foreground segmentation and depth propagation. IEEE Transactions on Multimedia, 16(7), 1905-1914.
    [122] Yao, C., Tillo, T., Zhao, Y., Xiao, J., Bai, H., & Lin, C. (2014). Depth map driven hole filling algorithm exploiting temporal correlation information. IEEE Transactions on Broadcasting, 60(2), 394-404.
    [123] Keys, R. (1981). Cubic convolution interpolation for digital image processing. IEEE transactions on acoustics, speech, and signal processing, 29(6), 1153-1160.
    [124] Lindeberg, T. (1994). Scale-space theory: A basic tool for analyzing structures at different scales. Journal of applied statistics, 21(1-2), 225-270.
    [125] Kim, J. B., Piao, N., Kim, H. I., & Park, R. H. (2014, June). Depth hole filling for 3-D reconstruction using color and depth images. In Proc. Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on (pp. 1-2). IEEE.
    [126] Yang, N. E., Kim, Y. G., & Park, R. H. (2012, August). Depth hole filling using the depth distribution of neighboring regions of depth holes in the Kinect sensor. In Proc. Signal Processing, Communication and Computing (ICSPCC), 2012 IEEE International Conference on (pp. 658-661). IEEE.
    [127] J.-F. Yang and J.-R. Ohm (2016), “Conceptual Study of Potential Centralized Texture Depth Packing SEI Message”, Joint Collaborative Team on 3D Video Coding Extensions of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, the 15th Meeting: Document: JCT3V-O1004.
    [128] Han, Y., Yuan, Z., & Muntean, G. M. (2016). An innovative no-reference metric for real-time 3D stereoscopic video quality assessment. IEEE Transactions on Broadcasting, 62(3), 654-663.
    [129] Han, Y., Yuan, Z., & Muntean, G. M. (2015, June). Extended no reference objective quality metric for stereoscopic 3D video. In Proc. Communication Workshop (ICCW), 2015 IEEE International Conference on (pp. 1729-1734). IEEE.
    [130] Lipski, C., Klose, F., & Magnor, M. (2014). Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video. IEEE Transactions on Circuits and Systems for Video Technology, 24(6), 942-951.
    [131] Sun, W., Xu, L., Au, O. C., Chui, S. H., & Kwok, C. W. (2010). An overview of free view-point depth-image-based rendering (DIBR). In Proc. APSIPA Annual Summit and Conference (pp. 1023-1030).
    [132] Jin, J., Wang, A., Zhao, Y., Lin, C., & Zeng, B. (2016). Region-Aware 3-D Warping for DIBR. IEEE Transactions on Multimedia, 18(6), 953-966.
    [133] Ye, X., Li, J., Wang, H., Huang, H., & Zhang, X. (2017). Efficient Stereo Matching Leveraging Deep Local and Context Information. IEEE Access.
    [134] Yang, Q. (2015). Stereo matching using tree filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(4), 834-846.
    [135] Gudmundsson, S. A., Aanæs, H., & Larsen, R. (2007, July). Environmental effects on measurement uncertainties of time-of-flight cameras. In Proc. Signals, Circuits and Systems, 2007. ISSCS 2007. International Symposium on (Vol. 1, pp. 1-4). IEEE.
    [136] Choi, J., Min, D., & Sohn, K. (2014). Reliability-based multiview depth enhancement considering interview coherence. IEEE transactions on circuits and systems for video technology, 24(4), 603-616.
    [137] Holz, D., Holzer, S., Rusu, R. B., & Behnke, S. (2011, July). Real-time plane segmentation using RGB-D cameras. In Proc. Robot Soccer World Cup (pp. 306-317). Springer, Berlin, Heidelberg.
    [138] Shen, Y., Li, J., & Lü, C. (2014, October). Depth map enhancement method based on joint bilateral filter. In Proc. Image and Signal Processing (CISP), 2014 7th International Congress on (pp. 153-158). IEEE.
    [139] Wang, Y., Ortega, A., Tian, D., & Vetro, A. (2014, May). A graph-based joint bilateral approach for depth enhancement. In Proc. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on (pp. 885-889). IEEE.
    [140] Zhu, C., Zhao, Y., Yu, L., & Tanimoto, M. (2014). 3D-TV system with depth-image-based rendering. Springer.
    [141] Gong, X., Liu, J., Zhou, W., & Liu, J. (2013). Guided depth enhancement via a fast marching method. Image and Vision Computing, 31(10), 695-703.
    [142] Kasson, J. M., Nin, S. I., Plouffe, W., & Hafner, J. L. (1995). Performing color space conversions with three-dimensional linear interpolation. Journal of Electronic Imaging, 4(3), 226-250.
    [143] Middlebury Stereo Vision Page [Online]. Available: http://vision.middlebury.edu/stereo/data/
    [144] Richardt, C., Stoll, C., Dodgson, N. A., Seidel, H. P., & Theobalt, C. (2012, May). Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos. In Computer Graphics Forum (Vol. 31, No. 2pt1, pp. 247-256). Blackwell Publishing Ltd.
    [145] RGBZ Database [Online]. Available: http://resources.mpi-inf.mpg.de/rgbz-camera/
    [146] Konno, Y., Monno, Y., Kiku, D., Tanaka, M., & Okutomi, M. (2015, December). Intensity guided depth upsampling by residual interpolation. In Proc. JSME/RMD International Conference on Advanced Mechatronics (ICAM) (pp. 1-2).
    [147] Kim, K. I., & Kwon, Y. (2008, June). Example-based learning for single-image super-resolution. In Joint Pattern Recognition Symposium (pp. 456-465). Springer, Berlin, Heidelberg.

    下載圖示 校內:2023-06-01公開
    校外:2023-06-01公開
    QR CODE