簡易檢索 / 詳目顯示

研究生: 張凱迪
Chang, Kai-Ti
論文名稱: 秩序度控制光/熱感應液晶高分子致動器的研究
Study on Photo/Thermal Sensitive Liquid Crystalline Polymeric Actuators Tuned by Variation of Order Parameters
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 80
中文關鍵詞: 液晶高分子致動器光聚合光熱轉換聚多巴胺
外文關鍵詞: liquid crystal polymer actuators, photo-polymerization, photo-thermal transition, polydopamine
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,以智能材料為主的致動器,由於其在軟性機器人、感測器及人工肌肉領域中具有潛在的應用,因而引起了人們的極大興趣。當接受到外界的刺激時,例如: 熱、光和電場,智能致動器可以表現出可逆的形狀變化。在這些致動器中,液晶高分子彈性體致動器具有獨特的物理性質,因其包含液晶的高秩序性排列及高分子網狀聚合物的彈性性質。本研究中製造了一系列熱驅動液晶致動器,首先準備了含有平行配向層及垂直配向層的玻璃反應槽,然後將市售之液晶單體RM105、聚乙二醇二丙烯酸酯、光啟始劑(Irg184)和雙官能基單體RM257均勻混合後,注入玻璃反應槽內。此液晶混合物的相變溫度,藉由DSC與POM進行鑑定。最後,使液晶混合物在254奈米波長的紫外光照射下,在玻璃反應槽中聚合。當接近或遠離熱源時,聚合後的液晶薄膜展現出可重複操作的的動態彎曲現象。當液晶相轉變時會造成液晶薄膜中分子排列的變化,進而誘導這種可重複運動的彎曲現象。根據此原理,設計了一系列不同的液晶致動器,使高分子膜在熱的驅動下,展示出各種彎曲運動和可承載重物的機械力。聚多巴胺對於紅外光具有優異的光熱轉換效果,藉由塗佈聚多巴胺於表層,製備對紅外光具有高靈敏度的液晶高分子致動器。由實驗結果可知,本研究所製備的液晶致動器,可以有效地將熱能或光能轉換成機械動力。此設計的液晶致動器,期待在人造肌肉和微型機器人系統中具有多種應用潛力。

    In recent years, smart materials-based actuators have been attracting much interest because of their envisioned applications in the fields of soft robots, sensors, and artificial muscles. Upon receiving external stimuli (such as heat, light and electrical field), they can exhibit reversible shape changes. Among these actuators, liquid crystalline actuators have unique properties because of combining liquid crystal orientational order with the elastic properties of a polymer network component. In this research, a series of thermal triggered liquid crystalline actuators was fabricated. A glass cell composed of a parallel aligning layer and a perpendicular aligning layer substrates was prepared. A mixture of monomeric RM105, poly(ethylene glycol) diacrylate and photo-initiator Irg-184 with cross-linker RM257 was then injected into the cell. The nematic-isotropic transition temperature of the liquid crystal mixture was estimated using DSC and POM. The liquid crystal mixtures were polymerized in glass cell under 254nm UV irradiation. The polymerized liquid crystalline films show reversible bending motion when close to or away from the heat source. This phenomenon is ascribed to the change of molecular orientation triggered by the variation of order parameters. In view of this, we also designed a series of different LC actuators which show various bending motions and carrying ability under thermal actuation. With the photo-thermal transformation of polydopamine on infrared light, a high sensitive infrared LC actuator doping with polydopamine was fabricated. The observed results suggest that the synthesized LC actuators can effectively transfer thermal and photo energy to mechanical power. These predesigned LC actuators are expected to show a great deal of potential for applications in artificial muscles and micro-robot systems.

    Abstract I 中文摘要 III 致謝 V Contents VI List of Schemes IX List of Tables IX List of Figures X 1. Introduction 1 1-1 Preface 1 1-2 Research Motivation 2 2. Literature Review 4 2-1 Introduction of Liquid Crystals 4 2-2 Classification of Liquid Crystals 7 2-2-1 Thermotropic Liquid Crystal 7 2-2-1-1 Nematic Liquid Crystal 8 2-2-1-2 Smectic Liquid Crystals 9 2-2-1-3 Cholesteric Liquid Crystal Phase 11 2-2-2 Lyotropic Liquid Crystal 13 2-3 Anisotropic Properties of Liquid Crystals 14 2-3-1 Birefringence of Liquid Crystals 16 2-3-2 Dielectric Properties of Liquid Crystals 17 2-4 Introduction of Photopolymerization Reaction 18 2-5 Introduction of Liquid Crystalline Polymeric Materials 19 2-6 Introduction of Liquid Crystalline Actuators 21 2-6-1 Thermal Driven LC Actuators 22 2-6-2 Solvent-Sensitive LC Actuators 24 2-6-3 Light-Driven LC Actuators 27 2-7 Introduction of Polydopamine Coated Application 31 2-7-1 Polydopamine Application in LC Actuators 32 3. Experimental Section 36 3-1 Materials 36 3-2 Instruments 37 3-3 Experimental Process 38 3-3-1 Fabrication of Liquid Crystal Cell 38 3-3-2 Near-Infrared Sensitive Actuators 42 3-3-3 Mechanical Properties of Liquid Crystal Actuators 43 3-3-4 SEM Observation of LC Films 43 4. Results and Discussion 44 4-1 Characterization of the Liquid Crystal Mixtures 44 4-1-1 Components Ratio of LC Mixtures 44 4-1-2 Thermal Properties of LC Mixtures 45 4-1-3 Optical Properties of LC Mixture 49 4-1-4 Results of Photo Polymerization 51 4-2 Characterization of the Synthesized LC Film 52 4-2-1 Thermal Properties of the Synthesized LC Film 52 4-2-2 Fabrication of Aligning Layers of LC Cells 54 4-2-3 Morphology of the Synthesized LC Film 57 4-3 Actuation of the LC Actuators 59 4-3-1 Thermal Actuation of LC Actuators 59 4-3-2 Mechanism of the Thermal-Response Bending 61 4-3-3 Investigation of Bending Angle 62 4-3-4 Gripping Motion of LC Actuator 64 4-3-4 Near-Infrared (NIR) Stimulation of LC Actuator 66 4-3-5 Analysis of Polydopamine Coated on the Surface of LC Actuator 69 4-4 Mechanical Properties of the Synthesized LC Films 74 5. Conclusions 75 References 76

    [1]Reinitzer, F., Contributions to the knowledge of cholesterol. Liquid Crystals, 1989. 5(1): p. 7-18.
    [2]Lehmann, O., Über fliessende krystalle. Zeitschrift für physikalische Chemie, 1889. 4(1): p. 462-472.
    [3]Lehmann, O., Zur geschichte der flüssigen kristalle. Annalen der Physik, 1908. 330(5): p. 852-860.
    [4]Lehmann, O., Annalen der Physik, 1908. 27: p. 1099.
    [5]Brown, G.H., Structure, properties, and some applications of liquid crystals. Journal of the Optical Society of America, 1973. 63(12): p. 1505-1514.
    [6]Baumgärtel, H., Grünbein, W., Hensel, F., Topics in Physical Chemistry. Springer, 1994.
    [7]Goodby, J.W., Materials and Phase Structures of Calamitic and Discotic Liquid Crystals. Handbook of Visual Display Technology, 2014: p. 1-42.
    [8]Govindaiah, T.N., Electro-Optical and Thermodynamic Studies on Induced Reentrant Smectic-A Phase in Binary Mixture of Liquid Crystalline Materials. Chem Technol Ind J, 2016. 11(6): p. 106.
    [9]Abberley, J.P., Killah, R., Walker, R., Storey, J.M., Imrie, C.T., Salamończyk, M., Zhu, C., Gorecka, E., and Pociecha, D., Heliconical smectic phases formed by achiral molecules. Nature communications, 2018. 9(1): p. 228.
    [10]Stephen, M.J. and Straley, J.P., Physics of liquid crystals. Reviews of Modern Physics, 1974. 46(4): p. 617.
    [11]Hirshberg, Y., Photochromy in the bianthrone series. Comp. Rend, 1950. 231: p. 903.
    [12]Hegmann, T., Qi, H., and Marx, V.M., Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. Journal of Inorganic and Organometallic Polymers and Materials, 2007. 17(3): p. 483-508.
    [13]Collings, P.J. and Hird, M., Introduction to liquid crystals: chemistry and physics. 2017: CRC Press.
    [14]Kumar, S., Liquid crystals: experimental study of physical properties and phase transitions. 2001: Cambridge University Press.
    [15]Khoo, I.-C. and Wu, S.-T., Optics and nonlinear optics of liquid crystals. 1993: World Scientific.
    [16]De Gennes, P.-G. and Prost, J., The physics of liquid crystals. Vol. 83. 1995: Oxford university press.
    [17]Kevin D. Belfield and James V. Crivello, Photoinitiated Polymerization. American Chemical Society, 2003. 847.
    [18]Dietliker, K., A compilation of photoinitiators commercially available for UV today. 2002: SITA Technology Limited.
    [19]Fouassier, J.-P. and Allonas X., Basics and Applications of Photopolymerization Reactions. Research Signpost, 2010: p. 257.
    [20]Fouassier, J.-P. and Lalevée, J., Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. 2012: John Wiley & Sons.
    [21]White, T.J. and Broer, D.J., Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature materials, 2015. 14(11): p. 1087.
    [22]De Gennes, P.G., Hébert, M., and Kant, R. Artificial muscles based on nematic gels. in Macromolecular Symposia. 1997. Wiley Online Library.
    [23]Kundler, I. and Finkelmann, H., Director reorientation via stripe‐domains in nematic elastomers: influence of cross‐link density, anisotropy of the network and smectic clusters. Macromolecular Chemistry and Physics, 1998. 199(4): p. 677-686.
    [24]Naciri, J., Srinivasan, A., Jeon, H., Nikolov, N., Keller, P., and Ratna, B.R., Nematic elastomer fiber actuator. Macromolecules, 2003. 36(22): p. 8499-8505.
    [25]Qian, X., Chen, Q., Yang, Y., Xu, Y., Li, Z., Wang, Z., Wu, Y., Wei, Y., and Ji, Y., Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots. Advanced Materials, 2018. 30(29): p. 1801103.
    [26]Saed, M.O., Torbati, A.H., Nair, D.P., and Yakacki, C.M., Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. JoVE (Journal of Visualized Experiments), 2016(107): p. e53546.
    [27]Kamal, T. and Park, S.-Y., Shape-responsive actuator from a single layer of a liquid-crystal polymer. ACS applied materials & interfaces, 2014. 6(20): p. 18048-18054.
    [28]Shang, Y., Liu, J., Zhang, M., He, W., Cao, X., Wang, J., Ikeda, T., and Jiang, L., Reversible solvent-sensitive actuator with continuous bending/debending process from liquid crystal elastomer-colloidal material. Soft matter, 2018. 14(27): p. 5547-5553.
    [29]Iqbal, D. and Samiullah, M., Photo-responsive shape-memory and shape-changing liquid-crystal polymer networks. Materials, 2013. 6(1): p. 116-142.
    [30]Barrett, C.J., Mamiya, J.-i., Yager, K.G., and Ikeda, T., Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter, 2007. 3(10): p. 1249-1261.
    [31]Mamiya, J.-i., Photomechanical energy conversion based on cross-linked liquid-crystalline polymers. Polymer journal, 2013. 45(3): p. 239.
    [32]Lu, X., Guo, S., Tong, X., Xia, H., and Zhao, Y., Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Advanced Materials, 2017. 29(28): p. 1606467.
    [33]Zeng, H., Wani, O.M., Wasylczyk, P., Kaczmarek, R., and Priimagi, A., Self‐regulating iris based on light‐actuated liquid crystal elastomer. Advanced Materials, 2017. 29(30): p. 1701814.
    [34]Yamada, M., Kondo, M., Mamiya, J.-i., Yu, Y., Kinoshita, M., Barrett, C.J., and Ikeda, T., Photomobile polymer materials: towards light‐driven plastic motors. Angewandte Chemie International Edition, 2008. 47(27): p. 4986-4988.
    [35]Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B., Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-430.
    [36]Li, Z., Zhang, X., Wang, S., Yang, Y., Qin, B., Wang, K., Xie, T., Wei, Y., and Ji, Y., Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chemical science, 2016. 7(7): p. 4741-4747.
    [37]Liu, Q., Wang, N., Caro, J.r., and Huang, A., Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. Journal of the American Chemical Society, 2013. 135(47): p. 17679-17682.
    [38]Liu, Y., Ai, K., Liu, J., Deng, M., He, Y., and Lu, L., Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced materials, 2013. 25(9): p. 1353-1359.
    [39]Tian, H., Wang, Z., Chen, Y., Shao, J., Gao, T., and Cai, S., Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle. ACS applied materials & interfaces, 2018. 10(9): p. 8307-8316.
    [40]Baginska, M., Blaiszik, B.J., Rajh, T., Sottos, N.R., and White, S.R., Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres. Journal of power sources, 2014. 269: p. 735-739.

    QR CODE