| 研究生: |
黃予新 Huang, Yu-Sin |
|---|---|
| 論文名稱: |
利用虛擬實境探討改善行人分心之人機互動模式成效-以行進間使用手機為例 Using Virtual Reality to Explore the effect of Human Interaction Countermeasure on Using Mobile Phones while Walking |
| 指導教授: |
林明毅
Lin, Ming-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 虛擬實境 、行人分心改善人機互動對策 、雙重任務 、情境察覺 、行人安全 |
| 外文關鍵詞: | virtual reality, countermeasure, dual-task, situational awareness, pedestrian safety |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
手機在今日已成為人們生活不可或缺的一部分,但同時也帶來了不少的問題,其中一項就是行人在行進間使用手機分心所帶來的安全問題。多項研究也顯示出行人在行進間使用手機可能造成的安全危害,且相關數據指出,行人發生意外的數量正逐漸攀高。
本研究希望藉由實驗性研究來了解行人分心改善人機互動對策是否會影響行人注意力資源分配情況,且透過虛擬實境建置現今技術較無法達到的行人分心改善人機互動對策,提供更加符合真實情況的數據,供未來行人安全相關研究和先進技術的人機互動設計做為參考。
本研究主要目的在於探討行人於行進間執行手機任務時,若搭配行人分心改善人機互動對策,是否會對行人之注意力分配策略、情境察覺程度造成影響。實驗預計招募30名受試者,使受試者在虛擬實境中建立的虛擬環境中行走,並同時執行手機任務及路況偵測任務配合行人分心改善人機互動對策。實驗共有兩種手機任務,及三種行人分心改善人機互動對策,共六種不同的雙重任務模擬情境,模擬行人在行人分心改善人機互動對策下執行不同手機任務的情況。希望藉由分析實驗中蒐集到的偵測路況績效、手機任務績效、眼動資料、心智負荷量以及可用性程度,來了解行進中使用手機配合行人分心改善人機互動對策對行人危害程度影響的差異與特徵。
研究發現,行進間使用手機配合預防對策能使路況反應時間縮短。可用性高的預防對策,不僅提高環境察覺能力,也能降低使用者的心智負荷量。使用預防對策可以在跨越馬路時使偵測汽車的時間變少,但無法對過馬路時機和安全帶來幫助。而三種預防對策中,擴增實境預防對策為綜合所有指標中,具有較大潛力的預防對策,不僅可用性程度較高,也較不會干擾使用者體驗。
行進間使用手機會對行人造成危害,若不得已一定要於行進間使用手機,預防對策具有減少其危害的效用和潛力,未來若要進行實體的開發,可以基於手機警示預防對策和擴增實境預防對策的設計,針對使用者體驗和干擾程度做進一步的優化。
The main purpose of this study is to investigate whether implementing countermeasures while pedestrians perform phone tasks during walking would affect their attention allocation strategies and situational awareness. A total of 30 participants were recruited for the experiment. They were required to walk in a virtual environment that created in headset. Participants simultaneously perform phone tasks and road condition detection tasks while executing countermeasures to mitigate distractions. The experiment consists of two types of phone tasks and three types of countermeasures, resulting in six different dual-task simulation scenarios. Participants performances on road condition detection, phone task performance, eye movement data, cognitive workload were collected during the experiment and further examined and analyzed.
The result showed that using mobile phones while walking with countermeasures can reduce the reaction time to road events. High usability countermeasures not only enhance environmental awareness but also reduce users' cognitive load. Using countermeasures can reduce the time spent detecting cars when crossing the road but does not assist with the timing and safety of crossing. Among the three countermeasures, the augmented reality countermeasure show the most potential as they have higher usability and less interference with user experience.Therefore, this study suggests that if it is absolutely necessary to use a mobile phone while walking, countermeasures have the potential to reduce the associated harm. In future prototype developments, designs based on mobile phone warning countermeasure and augmented reality countermeasure can be implemented to further optimize user experience and minimize interference.
中文文獻
國家發展委員會, 2019. 108 年持有手機民眾數位機會調查報告.
國家通訊傳播委員會, 2020. Ncc通訊市場調查報告.
莊書怡, 蘇衍如 & 沈盈吟, 2018. 台灣人更黏手機了!近8成民眾每天使用手機逾2小時 資策會:掌握娛樂市場需求成下一波商機 [online]. 財團法人資訊工業策進會. Available from: https://www.iii.org.tw/Press/NewsDtl.aspx?nsp_sqno=2081&fm_sqno=14
英文文獻
App Annie, 2021. Consumers in three countries now spend more than 5 hours a day in apps [online]. https://www.appannie.com/en/insights/market-data/consumers-in-five-countries-now-spend-more-than-5-hours-a-day-in-apps/
Avis, K.T., Gamble, K.L. & Schwebel, D.C., 2014. Does excessive daytime sleepiness affect children's pedestrian safety? Sleep, 37 (2), 283-287.
Banducci, S.E., Ward, N., Gaspar, J.G., Schab, K.R., Crowell, J.A., Kaczmarski, H. & Kramer, A.F., 2016. The effects of cell phone and text message conversations on simulated street crossing. Human Factors, 58 (1), 150-162.
Barin, E.N., Mclaughlin, C.M., Farag, M.W., Jensen, A.R., Upperman, J.S. & Arbogast, H., 2018. Heads up, phones down: A pedestrian safety intervention on distracted crosswalk behavior. Journal of community health, 43 (4), 810-815.
Bart, O., Katz, N., Weiss, P.L. & Josman, N., 2008. Street crossing by typically developed children in real and virtual environments. OTJR: Occupation, Participation and Health, 28 (2), 89-96.
Bindschädel, J., Krems, I. & Kiesel, A., 2021. Interaction between pedestrians and automated vehicles: Exploring a motion-based approach for virtual reality experiments. Transportation Research Part F: Traffic Psychology and Behaviour, 82, 316-332.
Binkley, J.M., Stratford, P.W., Lott, S.A., Riddle, D.L. & Network, N.a.O.R.R., 1999. The lower extremity functional scale (lefs): Scale development, measurement properties, and clinical application. Physical therapy, 79 (4), 371-383.
Böckle, M.-P., Brenden, A.P., Klingegård, M., Habibovic, A. & Bout, M., 2017. Sav2p: Exploring the impact of an interface for shared automated vehicles on pedestrians' experience. Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct. Oldenburg, Germany: Association for Computing Machinery, 136–140.
Borys, M. & Plechawska-Wójcik, M., 2017. Eye-tracking metrics in perception and visual attention research. EJMT, 3, 11-23.
Brooke, J., 1996. Sus: A "quick and dirty" usability scale. In Jordan, P.W., Thomas, B., Weerdmeester, B.A. & Mcclelland, A.L. eds. Usability evaluation in industry. London: Taylor and Francis, 189–194.
Byington, K.W. & Schwebel, D.C., 2013. Effects of mobile internet use on college student pedestrian injury risk. Accid Anal Prev, 51, 78-83.
Camara, F., Dickinson, P. & Fox, C., 2021. Evaluating pedestrian interaction preferences with a game theoretic autonomous vehicle in virtual reality. Transportation Research Part F: Traffic Psychology and Behaviour, 78, 410-423.
Cavallo, V., Dommes, A., Dang, N.T. & Vienne, F., 2019. A street-crossing simulator for studying and training pedestrians. Transportation Research Part F-Traffic Psychology and Behaviour, 61, 217-228.
Cbc, 2017. Ontario mpp proposes law to fine distracted pedestrians [online]. https://www.cbc.ca/news/canada/toronto/ontario-zombie-law-distracted-walking-1.4378205
Chen, E.H. & Bailey, D.H., 2021. Dual-task studies of working memory and arithmetic performance: A meta-analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47 (2), 220.
Cnn, 2019. New york might make it illegal to text while walking [online]. https://edition.cnn.com/2019/05/20/us/new-york-walking-while-texting-trnd/index.html
Colley, M., Li, S. & Rukzio, E., 2021. Increasing pedestrian safety using external communication of autonomous vehicles for signalling hazards. Proceedings of the 23rd International Conference on Mobile Human-Computer Interaction. 1-10.
Dey, D., Walker, F., Martens, M. & Terken, J., 2019. Gaze patterns in pedestrian interaction with vehicles: Towards effective design of external human-machine interfaces for automated vehicles. Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Utrecht, Netherlands: Association for Computing Machinery, 369–378.
Dommes, A., Cavallo, V., Dubuisson, J.-B., Tournier, I. & Vienne, F., 2014. Crossing a two-way street: Comparison of young and old pedestrians. Journal of Safety Research, 50, 27-34.
Doric, I., Frison, A.-K., Wintersberger, P., Riener, A., Wittmann, S., Zimmermann, M. & Brandmeier, T., 2016. A novel approach for researching crossing behavior and risk acceptance: The pedestrian simulator. Adjunct Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Ann Arbor, MI, USA: Association for Computing Machinery, 39–44.
Farahani, N., Post, R., Duboy, J., Ahmed, I., Kolowitz, B.J., Krinchai, T., Monaco, S.E., Fine, J.L., Hartman, D.J. & Pantanowitz, L., 2016. Exploring virtual reality technology and the oculus rift for the examination of digital pathology slides. Journal of pathology informatics, 7, 22-22.
Feld, J.A. & Plummer, P., 2019a. Visual scanning behavior during distracted walking in healthy young adults. Gait and Posture, 67, 219-223.
Feld, J.A. & Plummer, P., 2019b. Visual scanning behavior during distracted walking in healthy young adults. Gait & posture, 67, 219-223.
Feng, Y., Duives, D.C. & Hoogendoorn, S.P., 2021. Using virtual reality to study pedestrian exit choice behaviour during evacuations. Safety Science, 137, 105158.
Genova, C., Biffi, E., Arlati, S., Redaelli, D.F., Prini, A., Malosio, M., Corbetta, C., Davalli, A., Sacco, M. & Reni, G., 2021. A simulator for both manual and powered wheelchairs in immersive virtual reality cave. Virtual Reality.
Ghsa, 2020. Pedestrain traffic fatalities by state 2020 preliminary data.
Giannopoulos, I., Kiefer, P. & Raubal, M., 2015. Gazenav: Gaze-based pedestrian navigation. Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services. Copenhagen, Denmark: Association for Computing Machinery, 337–346.
Gruden, C., Ištoka Otković, I. & Šraml, M., 2021. Pedestrian safety at roundabouts: Their crossing and glance behavior in the interaction with vehicular traffic. Accident Analysis & Prevention, 159, 106290.
Hacohen, S., Shvalb, N. & Shoval, S., 2018. Dynamic model for pedestrian crossing in congested traffic based on probabilistic navigation function. Transportation Research Part C: Emerging Technologies, 86, 78-96.
Haga, S., Sano, A., Sekine, Y., Sato, H., Yamaguchi, S. & Masuda, K., 2015. Effects of using a smart phone on pedestrians’ attention and walking. Procedia Manufacturing, 3, 2574-2580.
Hart, S.G. & Staveland, L.E., 1988. Development of nasa-tlx (task load index): Results of empirical and theoretical research. Advances in Psychology. 139-183.
Hasan, R., Hoque, M.A., Karim, Y., Griffin, R., Schwebel, D.C. & Hasan, R., 2022. Someone to watch over you: Using bluetooth beacons for alerting distracted pedestrians. IEEE Internet of Things Journal, 9 (22), 23017-23030.
Horberry, T., Osborne, R. & Young, K., 2019. Pedestrian smartphone distraction: Prevalence and potential severity. Transportation Research Part F: Traffic Psychology and Behaviour, 60, 515-523.
Jacob, R.J.K. & Karn, K.S., 2003. Commentary on section 4 - eye tracking in human-computer interaction and usability research: Ready to deliver the promises. In Hyönä, J., Radach, R. & Deubel, H. eds. The mind's eye. Amsterdam: North-Holland, 573-605.
Jain, A., Bansal, R., Kumar, A. & Singh, K.D., 2015. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int J Appl Basic Med Res, 5 (2), 124-7.
Jiang, K., Ling, F., Feng, Z., Ma, C., Kumfer, W., Shao, C. & Wang, K., 2018. Effects of mobile phone distraction on pedestrians’ crossing behavior and visual attention allocation at a signalized intersection: An outdoor experimental study. Accident Analysis & Prevention, 115, 170-177.
Kalatian, A. & Farooq, B., 2021. Decoding pedestrian and automated vehicle interactions using immersive virtual reality and interpretable deep learning. Transportation Research Part C: Emerging Technologies, 124, 102962.
Kennedy, R.S., Lane, N.E., Berbaum, K.S. & Lilienthal, M.G., 1993. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3 (3), 203-220.
Khanna, U. & Awasthi, A., 2020. Increasing pedestrian safety and security management using internet of things (iot) application. In Li, X. & Xu, X. eds. Proceedings of the Seventh International Forum on Decision Sciences. Singapore: Springer Singapore, 87-97.
Kim, D., Han, K., Sim, J.S. & Noh, Y., 2018. Smombie guardian: We watch for potential obstacles while you are walking and conducting smartphone activities. PLOS ONE, 13 (6), e0197050.
Kujala, T., 2009. Efficiency of visual time-sharing behavior: The effects of menu structure on poi search tasks while driving. Proceedings of the 1st International Conference on Automotive User Interfaces and Interactive Vehicular Applications. 63-70.
Labonte-Lemoyne, E., Cameron, A.F., Sénécal, S., Fredette, M., Faubert, J., Lepore, F. & Léger, P.M., 2022. What's that on your phone? Effects of mobile device task type on pedestrian performance. Human Factors, 187208221141175.
Larue, G.S., Watling, C.N., Black, A. & Wood, J.M., 2021. Improving the safety of distracted pedestrians with in-ground flashing lights. A railway crossing field study. Journal of Safety Research, 77, 170-181.
Lee, H. & Kim, S.-N., 2021. Perceived safety and pedestrian performance in pedestrian priority streets (ppss) in seoul, korea: A virtual reality experiment and trace mapping. International Journal of Environmental Research and Public Health, 18 (5), 2501.
Leggatt, A.P. & Noyes, J.M., 2000. Navigation aids: Effects on crew workload and performance. Military Psychology, 12 (2), 89-104.
Lennon, A., Oviedo-Trespalacios, O. & Matthews, S., 2017. Pedestrian self-reported use of smart phones: Positive attitudes and high exposure influence intentions to cross the road while distracted. Accident Analysis and Prevention, 98, 338-347.
Leveque, L., Ranchet, M., Deniel, J., Bornard, J.-C. & Bellet, T., 2020. Where do pedestrians look when crossing? A state of the art of the eye-tracking studies. Ieee Access, 8, 164833-164843.
Lin, M.-I.B. & Huang, Y.-P., 2017. The impact of walking while using a smartphone on pedestrians’ awareness of roadside events. Accident Analysis & Prevention, 101, 87-96.
Liu, Y., Alsaleh, R. & Sayed, T., 2021. Modeling the influence of mobile phone use distraction on pedestrian reaction times to green signals: A multilevel mixed-effects parametric survival model. Transportation Research Part F: Traffic Psychology and Behaviour, 81, 115-129.
Lohse, G.L., 1997. Consumer eye movement patterns on yellow pages advertising. Journal of Advertising, 26 (1), 61-73.
Lu, J.-M. & Lo, Y.-C., 2019. Can interventions based on user interface design help reduce the risks associated with smartphone use while walking? Cham: Springer International Publishing, 268-273.
Maillot, P., Dommes, A., Dang, N.-T. & Vienne, F., 2017. Training the elderly in pedestrian safety: Transfer effect between two virtual reality simulation devices. Accident Analysis & Prevention, 99, 161-170.
Malik, J., Kim, N.-Y., Parr, M.D.N., Kearney, J.K., Plumert, J.M. & Rector, K., 2023. Do simulated augmented reality overlays influence street-crossing decisions for non-mobility-impaired older and younger adult pedestrians? Human Factors, 00187208231151280.
Mallaro, S., Rahimian, P., O'neal, E.E., Plumert, J.M. & Kearney, J.K., 2017. A comparison of head-mounted displays vs. Large-screen displays for an interactive pedestrian simulator. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST.
Meir, A., Oron-Gilad, T. & Parmet, Y., 2015. Are child-pedestrians able to identify hazardous traffic situations? Measuring their abilities in a virtual reality environment. Safety Science, 80, 33-40.
Morrongiello, B.A., Corbett, M., Milanovic, M. & Beer, J., 2015a. Using a virtual environment to examine how children cross streets: Advancing our understanding of how injury risk arises. Journal of Pediatric Psychology, 41 (2), 265-275.
Morrongiello, B.A., Corbett, M., Milanovic, M., Pyne, S. & Vierich, R., 2015b. Innovations in using virtual reality to study how children cross streets in traffic: Evidence for evasive action skills. Injury Prevention, 21 (4), 266.
Mourra, G.N., Sénécal, S., Fredette, M., Lepore, F., Faubert, J., Bellavance, F., Cameron, A.-F., Labonté-Lemoyne, É. & Léger, P.-M., 2020. Using a smartphone while walking: The cost of smartphone-addiction proneness. Addictive Behaviors, 106, 106346.
Nasar, J.L. & Troyer, D., 2013. Pedestrian injuries due to mobile phone use in public places. Accident Analysis and Prevention, 57, 91-95.
Natapov, A. & Fisher-Gewirtzman, D., 2016. Visibility of urban activities and pedestrian routes: An experiment in a virtual environment. Computers, Environment and Urban Systems, 58, 60-70.
Nguyen-Phuoc, D.Q., Oviedo-Trespalacios, O., Su, D.N., De Gruyter, C. & Nguyen, T., 2020. Mobile phone use among car drivers and motorcycle riders: The effect of problematic mobile phone use, attitudes, beliefs and perceived risk. Accident Analysis & Prevention, 143, 105592.
Nieva, R., 2019. Google begins testing ar walking navigation for maps. Cnet.
Nikolic, M.I., Orr, J.M. & Sarter, N.B., 2004. Why pilots miss the green box: How display context undermines attention capture. The International Journal of Aviation Psychology, 14 (1), 39-52.
Nikolic, M.I. & Sarter, N.B., 2001. Peripheral visual feedback: A powerful means of supporting effective attention allocation in event-driven, data-rich environments. Human Factors, 43 (1), 30-38.
Npr, 2017. Honolulu's 'distracted walking' law takes effect, targeting phone users [online]. https://www.npr.org/sections/thetwo-way/2017/10/25/559980080/honolulus-distracted-walking-law-takes-effect-targeting-phone-users
Oldfield, R.C., 1971. The assessment and analysis of handedness: The edinburgh inventory. Neuropsychologia, 9 (1), 97-113.
Ortiz, N.C., Ramnarayan, M. & Mizenko, K., 2017. Distraction and road user behavior: An observational pilot study across intersections in washington, dc. Journal of Transport & Health, 7, 13-22.
Osborne, R., Horberry, T. & Young, K.L., 2020. Pedestrian distraction from smartphones: An end-user perspective on current and future countermeasures. Transportation Research Part F: Traffic Psychology and Behaviour, 73, 348-361.
Paulo, N. & Jorge, S., 2010. Optical flow and road environments. 440-449.
Pew Research Center, 2021. Mobile fact sheet [online]. https://www.pewresearch.org/internet/fact-sheet/mobile/
Rahimian, P., O’neal, E.E., Zhou, S., Plumert, J.M. & Kearney, J.K., 2018. Harnessing vehicle-to-pedestrian (v2p) communication technology: Sending traffic warnings to texting pedestrians. Human Factors, 60 (6), 833-843.
Ramey, M.M., Yonelinas, A.P. & Henderson, J.M., 2019. Conscious and unconscious memory differentially impact attention: Eye movements, visual search, and recognition processes. Cognition, 185, 71-82.
Rayner, K., 1995. Eye movements and cognitive processes in reading, visual search, and scene perception. Studies in visual information processing. Elsevier, 3-22.
Reid, G.B. & Nygren, T.E., 1988. The subjective workload assessment technique: A scaling procedure for measuring mental workload. Advances in psychology. Elsevier, 185-218.
Retting, R. & Schwartz, S., 2020. Pedestrian traffic fatalities by state: 2019 preliminary data: G.H.S.A.
Rubio, S., Díaz, E., Martín, J. & Puente, J.M., 2004. Evaluation of subjective mental workload: A comparison of swat, nasa‐tlx, and workload profile methods. Applied Psychology, 53 (1), 61-86.
Russo, B.J., James, E., Aguilar, C.Y. & Smaglik, E.J., 2018. Pedestrian behavior at signalized intersection crosswalks: Observational study of factors associated with distracted walking, pedestrian violations, and walking speed. Transportation Research Record. 1-12.
Ryffel, C.P., Muehlethaler, C.M., Huber, S.M. & Elfering, A., 2019. Eye tracking as a debriefing tool in upset prevention and recovery training (uprt) for general aviation pilots. Ergonomics, 62 (2), 319-329.
Saad, W.K., Hashim, Y. & Jabbar, W.A., 2020. Design and implementation of portable smart wireless pedestrian crossing control system. Ieee Access, 8, 106109-106120.
Saiano, M., Pellegrino, L., Casadio, M., Summa, S., Garbarino, E., Rossi, V., Dall’agata, D. & Sanguineti, V., 2015. Natural interfaces and virtual environments for the acquisition of street crossing and path following skills in adults with autism spectrum disorders: A feasibility study. Journal of NeuroEngineering and Rehabilitation, 12 (1), 17.
Schildbach, B. & Rukzio, E., 2010. Investigating selection and reading performance on a mobile phone while walking. ACM International Conference Proceeding Series. 93-102.
Schneider, S. & Bengler, K., 2020. Virtually the same? Analysing pedestrian behaviour by means of virtual reality. Transportation Research Part F: Traffic Psychology and Behaviour, 68, 231-256.
Schneider, S., Maruhn, P. & Bengler, K., 2018. Locomotion, non-isometric mapping and distance perception in virtual reality. Proceedings of the 2018 10th International Conference on Computer and Automation Engineering. Brisbane, Australia: Association for Computing Machinery, 22–26.
Schwebel, D.C., Gaines, J. & Severson, J., 2008. Validation of virtual reality as a tool to understand and prevent child pedestrian injury. Accident Analysis & Prevention, 40 (4), 1394-1400.
Schwebel, D.C., Hasan, R. & Griffin, R., 2020. Using bluetooth beacon technology to reduce distracted pedestrian behaviour: A cross-over trial study protocol. Injury Prevention, 26 (3), 295-298.
Schwebel, D.C., Hasan, R., Griffin, R., Hasan, R., Hoque, M.A., Karim, M.Y., Luo, K. & Johnston, A., 2021. Reducing distracted pedestrian behavior using bluetooth beacon technology: A crossover trial. Accident Analysis & Prevention, 159, 106253.
Schwebel, D.C., Mcclure, L.A. & Porter, B.E., 2017. Experiential exposure to texting and walking in virtual reality: A randomized trial to reduce distracted pedestrian behavior. Accident Analysis and Prevention, 102, 116-122.
Simmons, S.M., Caird, J.K., Ta, A., Sterzer, F. & Hagel, B.E., 2020. Plight of the distracted pedestrian: A research synthesis and meta-analysis of mobile phone use on crossing behaviour. Injury Prevention, 26 (2), 170-176.
Simpson, G., Johnston, L. & Richardson, M., 2003. An investigation of road crossing in a virtual environment. Accident Analysis & Prevention, 35 (5), 787-796.
Singh, S., Payne, S.R., Mackrill, J.B. & Jennings, P.A., 2015. Do experiments in the virtual world effectively predict how pedestrians evaluate electric vehicle sounds in the real world? Transportation Research Part F: Traffic Psychology and Behaviour, 35, 119-131.
Smith, D.C., Schreiber, K.M., Saltos, A., Lichenstein, S.B. & Lichenstein, R., 2013. Ambulatory cell phone injuries in the united states an emerging national concern. Journal of Safety Research, 47, 19-23.
Sobhani, A. & Farooq, B., 2018. Impact of smartphone distraction on pedestrians' crossing behaviour: An application of head-mounted immersive virtual reality. Transportation Research Part F-Traffic Psychology and Behaviour, 58, 228-241.
Solso, R.L., Maclin, O.H. & Maclin, M.K., 2008. Cognitive psychology, 8 ed.: Pearson Education, Inc.
Summala, H., Nieminen, T. & Punto, M., 1996. Maintaining lane position with peripheral vision during in-vehicle tasks. Human Factors, 38 (3), 442-451.
Tapiro, H., Oron-Gilad, T. & Parmet, Y., 2016. Cell phone conversations and child pedestrian’s crossing behavior; a simulator study. Safety Science, 89, 36-44.
Tapiro, H., Oron-Gilad, T. & Parmet, Y., 2018. The effect of environmental distractions on child pedestrian's crossing behavior. Safety Science, 106, 219-229.
Tapiro, H., Oron-Gilad, T. & Parmet, Y., 2020. Pedestrian distraction: The effects of road environment complexity and age on pedestrian’s visual attention and crossing behavior. Journal of Safety Research, 72, 101-109.
Topgear, 2019. Baguio city will soon ban pedestrians from using mobile devices [online]. https://www.topgear.com.ph/news/motoring-news/anti-distracted-pedestrians-baguio-city-a4354-20190702
Tsang, P.S. & Velazquez, V.L., 1996. Diagnosticity and multidimensional subjective workload ratings. Ergonomics, 39 (3), 358-381.
Uxmatters, 2020. How do users really hold mobile devices?
Velasco, J.P.N., Lee, Y.M., Uttley, J., Solernou, A., Farah, H., Van Arem, B., Hagenzieker, M. & Merat, N., 2021. Will pedestrians cross the road before an automated vehicle? The effect of drivers’ attentiveness and presence on pedestrians’ road crossing behavior. Transportation Research Interdisciplinary Perspectives, 12, 100466.
Wang, H., Li, D., Wang, Q., Schwebel, D.C., Miao, L. & Shen, Y., 2022. How distraction affects pedestrian response: Evidence from behavior patterns and cortex oxyhemoglobin changes. Transportation Research Part F: Traffic Psychology and Behaviour, 91, 414-430.
Ward, M.D. & Helton, W.S., 2022. Dual-task interference while receiving information on a head mounted display and manual tracking with and without auditory warnings. Applied Ergonomics, 101, 103713.
Wolverton, G.S. & Zola, D., 1983. The temporal characteristics of visual information extraction during reading. Eye movements in reading. Elsevier, 41-51.
Won, M., Shrestha, A., Park, K.J. & Eun, Y., 2020. Safercross: Enhancing pedestrian safety using embedded sensors of smartphone. Ieee Access, 8, 49657-49670.
Wood, L., 2020. Global artificial intelligence of things markets 2020-2025: Focus on technology & solutions [online]. ResearchAndMarkets.com. Available from: https://www.globenewswire.com/news-release/2020/10/22/2112611/0/en/Global-Artificial-Intelligence-of-Things-Markets-2020-2025-Focus-on-Technology-Solutions-AIoT-Solutions-Improve-Operational-Effectiveness-and-the-Value-of-Machine-Data.html [Accessed 17th, Nov, 2020].
World Health Organization, 2018. Global status report on road safety 2018: Summary [online]. World Health Organization. Available from: http://apps.who.int/iris/bitstream/handle/10665/277370/WHO-NMH-NVI-18.20-eng.pdf?ua=1
Yarbus, A., Haigh, B. & Rigss, L., 1967. Eye movements and vision. Plenum press new york.
Zapf, M.P.H., Boon, M., Lovell, N.H. & Suaning, G.J., 2015. Assistive peripheral prosthetic vision aids perception and mobility in outdoor environments: A virtual-reality simulation study. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 1638-1641.
Zhang, Y., 2011. Using virtual reality to determine how visual factors impact pedestrian behavior- a case study in hubin road, china. Advanced Materials Research. 1181-1185.
Zheng, J.M., Chan, K.W. & Gibson, I., 1998. Virtual reality. IEEE Potentials, 17 (2), 20-23.
Zhou, Z., 2015. Headsup: Keeping pedestrian phone addicts from dangers using mobile phone sensors. International Journal of Distributed Sensor Networks, 11 (5), 279846.
Zito, G.A., Cazzoli, D., Scheffler, L., Jäger, M., Müri, R.M., Mosimann, U.P., Nyffeler, T., Mast, F.W. & Nef, T., 2015. Street crossing behavior in younger and older pedestrians: An eye- and head-tracking study. BMC Geriatrics, 15 (1), 176.
校內:不公開