| 研究生: |
林俊豪 Lin, Chin-How |
|---|---|
| 論文名稱: |
應用高光譜遙測反射率求算水質參數及粒子粒徑(可行性之評估) Feasibility Study of Retrieving Water Quality and Particle Size from Hyperspectral Remote Sensing Reflectance |
| 指導教授: |
劉正千
Liu, Cheng-Chien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | Downhill Simplex Method演算法 、遙測反射率 、水質參數 、粒子粒徑 |
| 外文關鍵詞: | Downhill Simplex Method algorithm, remote sensing reflectance, water quality parameters, particle size |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
衛星遙測技術於近年來已廣泛應用在海洋資源的探勘與開發上,而關於使用遙測資料推算水質的方法,在前人的研究中亦已有相當的成果,例如Quasi-Analytical Algorithm (QAA)、Garver-Siegel-Maritorena model (GSM)及基因演算法結合半解析模式(GA-SA)…等。QAA在應用上具有速度快,估算固有光學性質(Inherent Optical Properties; IOP)準確度高的優勢,然而卻無法直接求取所需水質參數;GSM中IOP的設定主要受到葉綠素濃度的影響,不適用於含砂濃度較高的水體;GA-SA在IOP估算之準確度略遜於QAA,但具有可直接解算水質參數之優勢,然而其懸浮物質反算準確度卻差強人意,因此本研究欲利用Downhill Simplex Method(DSM)演算法建立水質反算模式。本研究欲求取具有不同IOP組成之水體於不同環境光場下所產生之遙測反射率(Rrs),因而需要大量資料進行分析。現地資料雖具準確性,其採集卻相當耗費時間與人力,且現有現地資料之數量有限,因此本研究針對各水體,建立完整模擬資料庫,再根據這些資料解算水質參數與粒子粒徑。
模擬資料庫的建立使用Hydrolight輻射傳輸模式模擬具有不同IOPs之水體,在模擬過程中選定了包含葉綠素-a濃度(C)、葉綠素背向散射比(bbph/bph)、有色溶解有機物質吸收係數(F)與衰減係數(r)以及懸浮顆粒濃度(d)和其背向散射比(bbd/bd)等六種水質與光學性質參數,以及太陽角、雲覆率、平均能見度、風速等四種環境參數,各種組合情形所產生的Rrs,並將Rrs代入所建立的水質反算模式以求取水質與光學性質參數之最佳化解。再與原本Hydrolight模擬所使用的水質與光學性質參數進行比較,驗證反算模式之準確性。最後利用反算模式所得之粒子背向散射係數bbp,討論在生物及非生物懸浮固體濃度大小及bb/b之相關性,進而分析粒子粒徑分布。
Remote sensing of satellite technology in recent years has been widely used in marine resources exploration and development, and on the use of telemetry data that we estimate water quality has been considerable progress in the previous study such as Quasi-Analytical Algorithm (QAA)、Garver-Siegel-Maritorena model (GSM) and GA-SA(Genetic algorithms and semi-analytical algorithm). QAA in applications can estimate inherent optical properties(IOP) with high accuracy, but it can’t directly obtain the required water quality parameters; In GSM IOP is determined primarily by the impact of chlorophyll concentration, and it doesn’t apply to the higher concentration of sand in the water; In GA-SA, the accuracy of the IOP slightly inferior than QAA, but has a direct solver water quality parameters advantages, however, its inverse suspended material accuracy is unsatisfactory, therefore, this study intends to use Downhill Simplex Method (DSM) algorithm to establish water quality inverse mode. In this study, we want to take a different composition in the IOP of the water bodies in the field under different ambient light of the remote sensing reflectance (Rrs) , which requires large amounts of data for analysis. Although in situ data with accuracy, but its collection is quite waste time and labor, and we have a limited number of information right now, therefore, this study for each water body, establish a complete simulation database, and then based on this information to inverse water quality parameters and particle size.
Simulation database created using Hydrolight radiative transfer model to simulation with different IOPs of the water body, selected during the simulation contains chlorophyll-a concentration(C), chlorophyll backscatter ratio (bbph /bph), colored dissolved organic matter absorption coefficient(F) and attenuation coefficient(r), suspended particles concentration(d) and its backscatter ratio(bbd/bd) of six water quality and optical parameters, and the sun angle, cloud cover, average visibility, wind speed and other kinds of environmental parameters, then we use various combinations of situation arising Rrs , and Rrs into the established patterns in order to obtain the inverse water quality parameters and the optical properties of the best resolve. Then used with the original Hydrolight simulated that used water quality and optical parameters were compared to verify the accuracy of the inverse. Finally, the inverse model obtained particle backscatter coefficient (bbp) to discussed in the biotic and abiotic suspended solids size and bb/b correlation, and then analyze the particle size distribution.
Ahn, Y.-H. (1999), Proprietes optiques des particules biologiques et minerales... Univ.P.& M., Curie, Paris, France.
Barale, V., and S. Folving (1996), Remote sensing of coastal interactions in the Mediterranean region, Ocean & Coastal Management, 30(2-3), 217-233.
Boss, E., M. S. Twardowski, and S. Herring (2001), Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution, Applied Optics, 40(27), 4885-4893.
Bricaud, A., A. Morel, and L. Prieur (1981), ABSORPTION BY DISSOLVED ORGANIC-MATTER OF THE SEA (YELLOW SUBSTANCE) IN THE UV AND VISIBLE DOMAINS, Limnology and Oceanography, 26(1), 43-53.
Bricaud, A., M. Babin, A. Morel, and H. Claustre (1995), VARIABILITY IN THE CHLOROPHYLL-SPECIFIC ABSORPTION-COEFFICIENTS OF NATURAL PHYTOPLANKTON - ANALYSIS AND PARAMETERIZATION, Journal of Geophysical Research-Oceans, 100(C7), 13321-13332.
Bukata, R. P., J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnyakov (1995), Optical Properties and Remote Sensing of Inland and Coastal Waters, CRC Press.
Buonassissi, C. J., and H. M. Dierssen (2010), A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters, Journal of Geophysical Research-Oceans, 115.
Chang, C. H., C. C. Liu, and C. G. Wen (2007), Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color, Optics Express, 15(2), 252-265.
Cui, T., J. Zhang, J. Tang, Y. Ma, and S. Qing (2010), Satellite retrieval of inherent optical properties in the turbid waters of the Yellow Sea and the East China Sea, Chinese Optics Letters, 8(8), 721-725.
Fettweis, M., M. Baeye, B. J. Lee, P. Chen, and J. C. S. Yu (2012), Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea), Geo-Marine Letters, 32(2), 123-137.
Fujiwara, A., T. Hirawake, K. Suzuki, and S. I. Saitoh (2011), Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region, Biogeosciences, 8(12), 3567-3580.
Gordon, H. R., and A. Morel, (1983), Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review; Lecture Notes on Coastal and Estuarine Studies, edited, p. 114, New York.
IOCCG (2013), http://www.ioccg.org/, edited.
Kallio, K., T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Vepsalainen, and T. Pyhalahti (2001), Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons, Science of the Total Environment, 268(1-3), 59-77.
Kostadinov, T. S., D. A. Siegel, and S. Maritorena (2009), Retrieval of the particle size distribution from satellite ocean color observations, Journal of Geophysical Research-Oceans, 114.
Lee, Z., S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, and B. Lubac (2010), Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties, Journal of Geophysical Research-Oceans, 115.
Lee, Z. P., K. L. Carder, and R. A. Arnone (2002), Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters, Applied Optics, 41(27), 5755-5772.
Lee, Z. P., K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch (1999), Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization, Applied Optics, 38(18), 3831-3843.
Liu, C. C., C. H. Chang, C. G. Wen, C. H. Huang, J. J. Hung, and J. T. Liu (2009), Using satellite observations of ocean color to categorize the dispersal patterns of river-borne substances in the Gaoping (Kaoping) River, Shelf and Canyon system, Journal of Marine Systems, 76(4), 496-510.
Maritorena, S., D. A. Siegel, and A. R. Peterson (2002), Optimization of a semianalytical ocean color model for global-scale applications, Applied Optics, 41(15), 2705-2714.
Miranda, P. J., and Granados, H. D (2003), Fast hazard evaluation employing digital photogrammetry: Popocatepetl glaciers, Mexico, GEOFISICA INTERNACIONAL-MEXICO-, 42, 275-283.
Mobley, C. D. (1994), Light and Water: Radiative Transfer in Natural Waters, Academic Press, San Diego.
Montes-Hugo, M. A., M. Vernet, R. Smith, and K. Carder (2008), Phytoplankton size-structure on the western shelf of the Antarctic Peninsula: a remote-sensing approach, International Journal of Remote Sensing, 29(3), 801-829.
Morel, A. (1974), Optical properties of pure water and pure sea water, in Optical aspects of oceanography, edited, New York.
Nelder, J. A., and R. Mead (1965), A SIMPLEX-METHOD FOR FUNCTION MINIMIZATION, Comput. J., 7(4), 308-313.
Pope, R. M., and E. S. Fry (1997), Absorption spectrum (380-700 nm) of pure water .2. Integrating cavity measurements, Applied Optics, 36(33), 8710-8723.
Qing, S., J. Tang, T. Cui, and J. Zhang (2011), Retrieval of inherent optical properties of the Yellow Sea and East China Sea using a quasi-analytical algorithm, Chinese Journal of Oceanology and Limnology, 29(1), 33-45.
Secretariat, I. (1994), IGBP in Action, edited, Stockholm.
Shanmugam, P., Y.-H. Ahn, J.-H. Ryu, and B. Sundarabalan (2010), An evaluation of inversion models for retrieval of inherent optical properties from ocean color in coastal and open sea waters around Korea, Journal of Oceanography, 66(6), 815-830.
Smith, R. C., and K. S. Baker (1981), OPTICAL-PROPERTIES OF THE CLEAREST NATURAL-WATERS (200-800 NM), Applied Optics, 20(2), 177-184.
Watson, E. B., G. B. Pasternack, A. B. Gray, M. Goni, and A. M. Woolfolk (2013), Particle size characterization of historic sediment deposition from a closed estuarine lagoon, Central California, Estuarine Coastal and Shelf Science, 126, 23-33.
王榮發 (2001), 以幾何雜湊技術進行醫學影像之對位量測, 中原大學, 桃園.
行政院環保署 (2013), http://www.epa.gov.tw/, edited.
吳政暉 (2009), 一個動態負載平衡之最大可能性估算計算架構, 國立中央大學, 桃園.
國家實驗研究院儀器科技研究中心 (2013), http://www.itrc.narl.org.tw/, edited.
張智華 (2008), 非點源汙染負荷模式及水質生光模式之結合與應用, 國立成功大學, 台南.
黃慶祥 (2006), 水庫水質與光學性質模式之建立及其應用, 國立成功大學, 台南.