簡易檢索 / 詳目顯示

研究生: 張燕賓
Chang, Yann-Bin
論文名稱: 應用有限元素法繪製三維散射式光彈條紋圖像及二力法條紋圖像分析
Plot of 3-D Scatted Light Photoelastic Fringe Patterns by Using Finite Element Method and the Two-Load Method for Fringe Analysis
指導教授: 陳元方
Chen, Treey Yuan-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系碩士在職專班
Department of Mechanical Engineering (on the job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 84
中文關鍵詞: 有限元素法次主應力等色線等傾線
外文關鍵詞: Finite Element Method, secondary principle stress, isochromatic, isoclinics
相關次數: 點閱:65下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光彈應力分析是一種很普遍且有很多研究的技術。我們可以透過光彈實驗得到具相同主應力方向點的軌跡,與相同主應力差值點之軌跡,此兩組數據為光彈應力分析中之重要參數。
    本文以有限元素法,模擬模型於受負載及邊界條件作用下,由所得之受力模型應力分佈情況,轉換成散射式光彈之條紋影像,並利用實驗方式所得到條紋圖像來與模擬所得條紋圖像作比較驗證。以有限元素模擬光彈應力分析中,散射式光彈中沿光通過路徑其次主應力方向改變之條紋影像。
    研究中L型模型模擬次主應力方向沿光線路徑方向改變的光彈條紋,並使用不同厚度的散射光以及沿著模型變形方向的散射光,經實驗所得條紋圖像與模擬所得條紋圖像比對,可得到相當吻合的結果。
    經由簡化光強度搭配有限元素法所得到的數據,模擬並討論兩者間的差異。使用簡化的方程式與二力法結合,求出次主軸應力方向,並與實驗結果比對,討論誤差的原因。

    The photoelastic stress analysis is a technology with many researches focus on it. We can acquire the locutions of points with the same principle stress direction and the principle stress difference through the photoelastic experiments These data are the important parameters in photoelastic stress analysis.

    The main purpose of this article is using Finite Element Method to simulate the distributions of stress when model Bear loadings and boundary conditions, then turn these into the intensities of lights to simulate the fringe patterns of scattered-light photoelasticity. And compare these results with the patterns of photoelastic experiments. We use Finite Element Method to simulate the isoclinic and isochromatic patterns of photoelasic experiments and the fringes while the secondary principle stress varies along the path of light and the secondary principle direction fixed.

    Using the L shape model to simulate the fringes while the secondary principle stress varies along the path of light, and use scattered-light of different thickness and transform scattered-light of direction along with the model. The simulation fringe pattern compare with the experiment pattern, can be quite identical results.

    Through the simplification of intensity with the finite element method of data. simulation and discuss both the difference. The use simplifies equation and two-load method union, solving secondary principle stress direction, compares with the experimental result, and discuss the reason of error margin.

    中文摘要.................................................... I 英文摘要................................................... II 誌 謝..................................................... III 目錄....................................................... IV 圖目錄.................................................... VII 符號說明................................................... X 第一章 緒論................................................ 1 1.1 研究背景與目的........................................ 1 1.2 文獻回顧.............................................. 3 1.2.1 有限元素法繪製光彈條紋之研究與應用.............. 3 1.2.2 散射光彈法之研究與應用.......................... 4 1.3 本文架構.............................................. 7 第二章 散射式光彈理論....................................... 9 2.1 簡介【23】........................................... 9 2.2 平面偏振光通過未受力模型的散射現象.................... 9 2.3 次主應力............................................ 10 2.4 光-應力定律......................................... 11 2.5 次主應力方向改變的散射光場........................... 12 2.6 散射式光彈二力法..................................... 21 第三章 有限元素法.......................................... 26 3.1 有限元素法簡介【25】................................. 26 3.2 自然座標............................................. 27 3.3 三維二十節點立方體元素.............................. 29 第四章 模擬方法與散射光彈實驗系統........................... 31 4.1 模擬方法............................................ 31 4.1.1 ANSYS 模擬..................................... 31 4.1.2 形狀函數內差................................... 32 4.2 散射式光彈實驗系統與方法............................ 37 4.3 影像處理............................................ 39 第五章 模擬、實驗結果與討論................................ 41 5.1 散射式光彈模擬...................................... 41 5.2 散射式光彈實驗...................................... 46 5.3 散射式光彈簡化模擬.................................. 53 5.4 散射式光彈二力法實驗................................ 57 5.5 結果及討論.......................................... 63 5.5.1 使用不同厚度之光源............................. 64 5.5.2 使用傾斜之光源................................. 68 5.5.3 簡化次主軸應力差值模擬......................... 73 5.5.4 散射式光彈二力法............................... 73 第六章 結論與建議.......................................... 76 6.1 結論................................................ 76 6.2 建議................................................ 78 參考文獻................................................... 79

    [1]. Ramesh K. Advanced Techniques and Applications.Springer Verlag, Digital Photoelasticity ,Berlin, 2000.
    [2]. Dally J.W, Riley W.F. Experimental stress analysis, McGraw-Hill, New York, 1991.
    [3]. Thercaris. P.S. and Gdoutos,E.E., Matrix Theory of Photoelasticity,Springer Series in Optical Sciences, Berlin,1979.
    [4]. Sanford R.J, Beaubien L.A. Stress analysis of a complex part: photoelasticity vs. finite elements. Experimental Mechanics 1977; p441–448.
    [5]. Guagliano M, Vergani L. Experimental and numerical analysis of sub-surface cracks in railway wheels.Engineering Fracture Mechanics 2005; p255–269.
    [6]. Meek J.L, Beer G. Contour plotting of data using isoparametric element representation. International Journal for Numerical Methods in Engineering 1976; p954–957.

    [7]. Akin J.E, Gray WH. An improved method for contouring on isoparametric surfaces. International Journal for Numerical Methods in Engineering 1979; p451–472.
    [8]. Stelzer J.F, Welzel R. Plotting of contours in a natural way. International Journal for Numerical Methods in Engineering 1987; p 1757–1769.
    [9]. Ramesh K, Yadav A.K, Pankhawalla VA. Plotting of fringe contours from finite element results. Communications in Numerical Methods in Engineering 1995; p 839–847.
    [10]. Ramesh K, Pathak P.M. Validation of finite element modelling through photoelastic fringe contours. Communications in Numerical Methods in Engineering 1999, p 229–238.
    [11]. P.R.D. Karthick Babu and K. Ramesh. Development of photoelastic fringe plotting scheme from 3D FE results. Communications in Numerical Methods in Engineering 2006, p 809-821
    [12]. R.Weller, A new Method for Photoelasticity in Three Dimensions.J.of Applied Physics 1939, p.266

    [13]. D.C.Drucker and R.D.Mindlin, Stress Analysis by Three-Dimensional Photoelasticity Methods. J. of Applied Physics 1940, p 724-732
    [14]. H. T. Jessop, The Scattered-Light Method of Exploration of Stress in Two- and Three-Dimensional Methods. Brit. J. of Applied Physics 1951,p.249-260
    [15]. W. Shelson and L. W. Smith,APhotoelastic Method Employing Scattered-Light for the Solution of Plane Stress Problem. Brit. J. of Applied Physics.1956, p 436-439
    [16].Y. F. Cheng.New Techniques for Scattered-Light Photoelasticity. Experimental Mechanics.1963, p 275-278
    [17]. Y. F. Cheng A Dual-observation Method for Determining Photoelastic Parameters in Scattered Light. Experimental Mechanics.1967, p 140-144
    [18]. Y. F. Cheng An Automatic System for Scattered-light Photoelasticity. Experimental Mechanics.1969, p 407-412
    [19]. R. W. Aderholdt, J. M. Mckinney, W. F. Ranson and W. F. Swinson, Effect of Rotating Secondary Principal Axes in Scattered-light Photoelasticity, April.1969, p160-165
    [20]. L. S. Srinath, analysis of Scattered-Light Method in Photoelasticity. Experimental Mechanics.1969, p 463-468
    [21]. R. W. Aderholdt and W. F. Swinson, Esablishing the Boundary Retardation with respect to the Observed Fringes in Scattered-Light Photoelasticity. Experimental Mechanics.1971, p 521-523
    [22]. X. L. Liu, S. C. Pan, and L. z. Ha, The Double-Light-Beam Method in Three-Dimensional Scattered-Light Photo-
    eleasticity Experimental Mechanics.1988, p60-64
    [23]. A. Katoh, J. Rao, M. Takashi and T. Kunio, Mode III Stress Intensity Factor Measurement by Scattered-Light Photoelasticity Using Digital Image Processing. Proceedings of Asian Pacific Conference on Fracture and Strength,Japan, 1993, p401-406.
    [24]. T. Y. Chen and H. L. Lee,” Whole-field digital measurement of the secondary principal stress parameters in scattered light photoelasticity”, 2005.
    [24].Lin, Jen-Chang and Wang, Wei-Chung, Investigation Thermal Stress of Bimaterial Structures,2006
    [26]. 陳忠貴 “應用有限元素法模擬光彈圖像”,國立成功大學碩士論文,2007。
    [26]. 陳新郁、林政仁 “有限元素分析-理論與應用ANSYS”, 台灣培生教育出版股份有限公司,中華民國95年。
    [27]. 佟景傳 “實驗應力分析”,湖南科學技術出板社,中國大陸,pp248-249, pp.291-294,1983。
    [28]. 繆紹剛 “數位影像處理”,台灣培生教育出版股份有限公司,中華民國92年。
    [29]. 康淵、陳信吉 “ANSYS入門”,全華科技圖書股份有限公司,中華民國95年。
    [30].J. N. Reddy, An Introduction to The Finite Element Method, Third Edition, McGRAW-HillCompanies,2006
    [31].洪維恩 ”Mathematica 5 數學運算大師”,旗標出版股份有限公司,2006。

    下載圖示 校內:2013-08-05公開
    校外:2013-08-05公開
    QR CODE