| 研究生: |
羅嘉盈 Lo, Chia-Ying |
|---|---|
| 論文名稱: |
嗎啡μ型受體作用劑在胰島素抗性改善效果的研究 Role of opioid-μ receptor in the improvement of insulin resistance |
| 指導教授: |
鄭瑞棠
Cheng, Juei-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 嗎啡μ型受體 、胰島素抗性 |
| 外文關鍵詞: | insulin resistance, opioid-μ receptor |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糖尿病乃因胰島素作用的失常,引致高血糖的一種新陳代謝疾病。本研究欲探討活化μ型接受體對胰島素抗性的緩解效果;使用μ型接受體作用劑的loperamide來探討其對胰島素敏感性的影響,評估改善胰島素抗性的可行性,並進一步研究改善胰島素抗性之可能機轉。依照文獻的方法,將摻有60﹪果糖飼料給予小鼠來誘發成胰島素抗性,再以tolbutamide測試;原本會促進胰島素釋放來造成降血糖的作用消失了,就表示動物已產生胰島素阻抗作用。在嗎啡μ型接受體剔除的小鼠會比普通的小鼠更快出現胰島素抗性。由此可知,μ型接受體在胰島素抗性形成的重要性。
接著,在果糖誘發的胰島素抗性大白鼠進行葡萄糖耐受性試驗 (glucose tolerance test)。與控制組相較,發現loperamide會顯著地降低 (Glucose insulin index) 此指標;另外,在遺傳性的第二型糖尿病老鼠 (Zucker-diabetic fatty rats) 也會看到相同的反應。當以loperamide連續給藥3天,取其果糖老鼠的骨骼肌,結果發現,loperamide會提高骨骼肌中IRS-1 (Tyr),PI-3 kinase (p85α) 及Akt (Ser473) 的活性。
進一步使用C2C12小鼠肌母細胞來解明loperamide改善胰島素抗性的可能機轉。發現不論在正常C2C12小鼠肌母細胞或是對TNF-α引致的胰島素抗阻作用,loperamide都會以劑量相關的方式增強細胞對葡萄糖的吸入 (Glucose uptake) 能力,但此項作用會被μ型接受體的拮抗劑naloxone及naloxonazine所阻斷。接著,前處理μ型接受體下游的訊息分子 phospholipase C (PLC) 的阻斷劑U73122,看到U73122會解消原先loperamide促進細胞對葡萄糖的吸入作用。同樣地,在protein kinase C (PKC) 的阻斷劑chelerythrine或GF109203X存在下,發現lopermaide促進C2C12細胞吸入的作用會呈現濃度相關性的減少。最後,在胰島素抗性的C2C12肌母細胞,也發現Loperamide不僅會提高細胞中胰島素訊息分子的活性,同時,更增強下游葡萄糖轉運蛋白 (GLUT4) 的蛋白表現量。
由此可知,在C2C12小鼠細胞,當TNF-α破壞胰島素訊息路徑的傳遞,降低了細胞對葡萄糖的吸入作用。此時,藉由loperamide活化嗎啡μ型接受體,啟動PLC-PKC的訊息路徑,可提升周邊組織對胰島素的反應來達到改善的作用。綜合以上的結果,無論在體內或是體外試驗,以loperamide活化嗎啡μ型接受體,皆可使胰島素抗性獲得有效地緩解。
Diabetes mellitus (DM) is the metabolic disorder caused by abnormalities of insulin action. The present study is performed to investigate whether activation of opioid-μ receptor can improve insulin resistance. Loperamide has been used as the selective agonist of opioid-μ receptor. Insulin resistance has been induced in animals by feeding the chow containing 60% fructose. Induction of insulin resistance characterized by loss of tolbutamide-induced plasma glucose lowering effect. Insulin resistance has been observed in the wild-type mice more rapidly than that in opioid-μ receptors knockout mice. The important role of opioid-μ receptor in insulin resistance can thus be considered.
Loperamide causes the lowering of glucose-insulin index in rats with insulin resistance more markedly than that from vehicle-treated group response to the glucose challenge test. In addition, the response is similar to Zucker-diabetic fatty rats. Correspondingly, insulin receptor substrate-1 (IRS-1) phosphorylation, IRS-1-associated phosphatidylinositol (PI) 3-kinase (PI 3-kinase) and protein kinase B (AKT) activity in soleus muscle are significantly increased by loperamide after repeated treatment for 3 days in rats with insulin resistance.
Effect of loperamide on insulin resistance is identified in mouse myoblast cell line C2C12 cells. Loperamide enhance the uptake of radioactive glucose into C2C12 cells with or without pretreated TNF-a in a concentration-related manner, which are abolished by naloxone and naloxonazine. The results suggest that activation of opioid-μ receptor may increase the insulin action to ameliorate insulin resistance. Pharmacological inhibition of phospholipase C (PLC) by U73122 decrease in loperamide -stimulated uptake of radioactive glucose into C2C12 cells pretreatment with TNF-a. Also, cheleythrine or GF109203X, protein kinase C (PKC) inhibitor, diminish the action of loperamide in a concentration- related manner. Then, TNF-a treatment causes a decrease in the protein levels of glucose transporter subtype 4 (GLUT4) and phosphorylation of several insulin signaling proteins, including IRS-1, PI 3-kinase, and AKT in C2C12 cells are also reversed by loperamide .
Thus, it shows that TNF-α impaired insulin signaling and insulin- stimulate glucose uptake in C2C12 cells can be restored by loperamide in a dose-related manner. The activation of opioid-μ receptor by loperamide may increase the glucose uptake via PLC-PKC pathway in C2C12 cells pretreated with TNF-a. In conclusion, activation of opioid-μ receptor by loperamide can improve insulin resistance both in vivo and in vitro.
Ahmad RS, Arthur S, and Michael JQ. A mathematical model of metabolic insulin signaling pathways. Am. J. Physiol.283: E1084-E11 01 (2002)
Bailey CJ, and Flatt PR. Increased responsiveness to glucoregulatory effect of opiates in obese-diabetic ob/ob mice. Diabetologia 30: 33-37 (1987)
Baron AD, Brechtel G, Wallace P, and Edelman SV. Rates and tissue sites of non-insulin-and insulin-mediated glucose uptake in human. Am. J. Physiol. 255: E769-E774 (1988)
Bergman RN, Finegood DT, and Kahn SE. The evolution of b-cell dysfunction and insulin resistance in type 2 diabetes. Eur. J. Clin. Invest. 32: 35-45 (2002)
Bezerra RM, Ueno M, Silva MS, Tavares DQ, Carvalho CR, and Saad MJ. A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J. Nutr. 130: 1531-1535 (2000)
Bruni JF, Watkins WB, and Yen SC. b-endorphin in the human endocrine pancreas. J. Clin. Endocrinol. Metab. 49: 649-651 (1979)
Cannon JG. Acute phase response in exercise. II. Associations between vitamin E. cytokines, and muscle proteolysis. Am. J. Physiol. 260: R1235-R1240 (1991)
Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, and Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. U.S.A. 72: 3666-3670 (1975)
Coupar IM. Opiate and opiate antidiarrhoeal drug action on rat isolated intestine. J. Auton. Pharmacol. 14: 69-78 (1994)
Curry DL, and Li CH. Stimulation of insulin secretion by beta-endorphin (1-27 and 1-31) Life. Sci. 40: 2053-2058 (1987)
Defronzo RA. The triumvirate: β-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37: 667-687 (1988)
Defronzo RA, Bonadonna RC, and Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 15: 318-368 (1992)
Derek LR, and Yehiel Z. Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 24: 588-597 (2001)
Erik JH, Stephen J, Tyson RK, Mary KT, and Michael K. Selective angiotensin II receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 38: 884-890 (2001)
Filz HP. Insulin sensitizer. A new therapy option for type 2 diabetic patients. MMW Fortschritte der Medizin. 142: 31-33 (2000)
Fonseca V, Rosenstock J, Patwardhan R, and Salzman A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. J. Am. Med. Assoc. 283: 1695-1702 (2000)
Gerich JE. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr. Rev. 19: 491-503 (1998)
Giugliano D. Morphine, opioid peptides and pancreatic islet function. Diabetes Care 7: 92-98 (1984)
Goldstein DA, and Massry SG. Diabetic nephropathy: Clinical course and effect of hemodialysis. Nephron 20: 286-296 (1987)
Greenberg AS, and Mcdaniel ML. Identifying the links between obesity, insulin resistance and b-cell function: potential role of adipocyte- derived cytokines in the pathogenesis of type 2 diabetes. Eur. J. Clin. Invest. 32: 24-34 (2002)
Hamman RF. Genetic and environmental determinants of non-insulin- dependent diabetes mellitus (NIDDM). Diabetes Metab. Rev. 8: 287-338 (1992)
Hauner H, Pertuschke T, Russ M, Röhrig K, and Eckel J. Effects of tumor necrosis factor alpha (TNF-a) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia 38: 764-771 (1995)
Herbert JM, Augereau JM, Gleye J, and Maffrand JP. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun. 172: 993-999 (1990)
Hollenbeck C, and Reaven GM. Variations in insulin-stimulated glucose uptake in healthy individuals with normal glucose tolerance. J. Clin. Endocrinol. Metab. 64: 1169-1173 (1987)
Hotamisligil GS, Shargill NS, and Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259: 87-91 (1993)
Hotamisligil GS, and Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43: 1271-1278 (1994)
Hotamisligil GS, Murray DL, and Choy LN. Spiegelman BM. Tumor necrosis factor α inhibits signaling from the insulin receptor. Proc. Natl. Acad. Sci. 91: 4854-4858 (1996)
Hotamisligil GS. The role of TNF alpha and TNF receptors in obesity and insulin resistance. J. Intern. Med. 245: 621-625 (1999)
Ivana Z, Susan S, Sally S, and Gerald MR. Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism 29: 970-973 (1980)
Iwase M, Yamaguchi M, Yoshinari M, Okamura C, Hirahashi T, Tsuji H, and Fujishima M. A Japanese case of liver dysfunction after 19 months of troglitazone treatment. Diabetes Care 22: 1382-1384 (1999)
Josefa NC, Rosaura M, Francisco PV, Victoria C, Lius MP, Juan T, and Vicente L. Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertension rats. Hypertension 26: 1074-1078 (1995)
Joshi S, Lee JW, and Wong YH. Stimulation of phospholipase C by the cloned m, d and k opioid receptors via chimeric Gaq mutants. Eur. J. Neurosci. 11: 383-388 (1999)
Kara RF, Michelle SS, Tyson RK, Melanie BS, Erik BY, and Erik JH. Effects of exercise training and ACE inhibition on insulin action in rat skeletal muscle. J. Appl. Physiol. 89: 687-694 (2000)
Katada T, Kurosu H, Okada T, Suzuki T, Tsujimoto N, Takasuga S, Kontani K, Hazeki O, and Ui M. Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors. Chem. Physi. lipids. 98: 79-86 (1999)
Lee MK, Miles PD, Khoursheed M, Gao KM, Moossa AR, and Olefsky JM. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Daibetes 43: 1435-1439 (1994)
Liu IM, Chi TC, Chen YC, Lu FH, and Cheng JT. Activation of opioid mu-receptor by loperamide to lower plasma glucose in streptozotocin -induced diabetic rats. Neurosci. Lett. 265: 183-186 (1999a)
Liu IM, Niu CS, Chi TC, Kuo DH, and Cheng JT. Investigation of the mechanism of the reduction of plasma glucose by cold-stress in streptozotocin-induced diabetic rats. Neurosci. 92: 1137-1142 (1999b)
Margolis RN. Hepatic glycogen synthase phosphatase and phosphorylase phosphatase activities are increased in obese (fa/fa) hyperinsulinemic Zucker rats: effects of glyburide administration. Life Sci. 41: 2615-2622 (1987)
McCormick M, and Quinn L. Treatment of type 2 diabetes mellitus: pharmacologic intervention. J. Cardiovasc. Nurs. 16: 55-67 (2002)
Mikael R, Andrea D, Vanessa VH, Hans H, Martin B, Leif P, Fredrick L, and Peter A. Mapping of early signaling events in tumor necrosis factor-a -mediated lipolysis in human fat cells. J. Biol. Chem. 277: 1085-1091 (2002)
Murphy EJ, Davern TJ, Shakil AO, Shick L, Masharani U, Chow H, Freise C, Lee WM, and Bass NM. Troglitazone-induced fulminant hepatic failure. Acute Liver Failure Study Group. Dig. Dis. Sci. 45: 549-553 (2000)
Muto Y, Nagao T, and Urushidani T. The putative phosphlipase C inhibitor U73122 and its negative control, U73343, elicit unexpected effects on the rabbit parietal cell. J. Pharmacol. Exp. Ther. 282: 1388-1397 (1997)
Robert TW, and Jeffrey EP. Subcellular compartmentalization and trafficking of the insulin-responsive glucose transporter, GLUT4. Exp. Cell. Res. 271: 75-83 (2001)
Ruan H, Hacohen N, Golub TR, Van PL, and Lodish HF. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappa B activation by TNF-alpha is obligatory. Diabetes 51: 1319-1336 (2002)
Saengsirisuwan V, Kinnick TR, Schmit MB, and Henriksen EJ. Interactions of exercise training and lipoic acid on skeletal muscle glucose transport in obese Zucker rats. J. Appl. Physiol. 91: 145-153 (2001)
Saltiel AR, and Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45: 1661-1669 (1996)
Scheen AJ, and Lefebvre PJ. Troglitazone: antihyperglycemic activity and potential role in the treatment of type 2 diabetes. Diabetes Care 22: 1568 -1577 (1999)
Smallridge RC, Kiang JG, Gist ID, Fein HG, and Gallowat RJ. U-73122, an aminosteroid phospholipase C antagonist, noncompetitively inhibits thyrotropin-releasing hormone effects in GH3 rat pituitary cell. Endocrinology 131: 1883-1888 (1992)
Spraul M, Anderson EA, Bogardus C, and Ravussin E. Muscle sympathetic nerve activity in response to glucose ingestion. Impact of plasma insulin and body fat. Diabetes 43: 191-196 (1994)
Stephans JM, and Pekala PH. Transcriptional repression of C/EBP-a and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor-a. J. Biol. Chem. 267: 13580-13584 (1992)
Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, and Wright CM. The hormone resistin links obesity to diabetes. Nature 409: 307-312 (2001)
Sugaya A, Sugiyama T, Yanase S, Shen XX, Minsoura H, and Toyoda N. Expression of glucose transporter 4 mRNA in adipose tissue and skeletal muscle of ovariectomized rats treated with sex steroid hormone. Life Sci. 66: 641-648 (1999)
Susan, Budavari. 10th The Merck Index, Merck & Co., Inc. Rahway, New Jersey. PP.797 (1996)
Tai TY, Yang CL, Chang CJ, Chang SM, Chen YH, Lin BJ, Ko LS, Chen MS, and Chen CJ. Epidemiology of diabetes mellitus in Taiwan, ROC -comparison between urban and rural areas. J. Med. A. Thai. 70: 49-53 (1987)
Tobey TA, Mondon CE, Zavaroni I, And Reaven GM. Mechanism of insulin resistance in fructose-fed rats. Metab. Clin. Exp. 31: 608-12 (1982)
Toyota T, and Ueno Y. Clinical effect and side effect of troglitazone. Nippon Rinsho-Jap. J. Clin. Med. 58: 376-382 (2000)
Ueda H, Miyamae T, Fukushima N, Takeshima H, Fukuda K, Sasaki Y, and Misu Y. Opioid m- and k-receptor mediate phospholipase C activation through Gi1 in Xenopus oocytes. Mol. Brain Res. 32: 166-170 (1995)
Vardit R, Mikhal G, and Yosef S. The mu opioid agonist DAMGO stimulates camp production in SK-N-SH cells through a PLC-PKC-Ca++ pathway. Mol. Brain. Res. 110: 261-266 (2003)
Verma S, Bhanot S, and McNeill JH. Sympathectomy prevents fructose -induced hyperinsulinemia and hypertension. Eur. J. Pharmacol. 373: R1-R4 (1999)
Weidmann P, Boehlen LM, and Courten M. Pathogenesis and treatment of hypertension associated with diabetes mellitus. Am. Heart. J. 125: 1498 -1513 (1993)
Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, and Pratley RE. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86: 1930-1935 (2001)
Wolffenbuttel BH, Gomis R, Squatrito S, Jones NP, and Patwardhan RN. Addition of low-dose rosiglitazone to sulfonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabet. Med. 17: 40-47 (2000)
Wuarin L, Namdev R, Burns JG, Fei ZJ, and Ishii DN. Brain insulin-like growth factor-II mRNA content is reduced in insulin-dependent and non-insulin-dependent diabetes mellitus. J. Neurochem. 67: 742-751 (1996)
Yamada K, Yamakawa K, and Terada Y. Expression of GLUT4 glucose transporter protein in adipose and skeletal muscle from streptozotocin -induced diabetic pregnant rats. Horm. Metab. Res. 31: 508-513 (1999)
Yamamura M, Wang XH, Ohmen JD, Uyemura K, Rea TH, Bloom BR, and Modlin RL. Cytokine patterns of immunologically mediated tissue damage. J. Immunol. 149: 1470-1475 (1992)
Yang WS, Jeng CY, Wu TJ, Tanaka S, Funahashi T, Matsuzawa Y, Wang JP, Chen CL, Tai TY, and Chuang LM. Synthetic peroxisome proliferator -activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care. 25: 376-80 (2002)
Ziel FH, Venkatesan N, and Davidson MB. Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes 37: 885-890 (1988)
Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J.Inter. Med. 247: 301-310 (2000)