簡易檢索 / 詳目顯示

研究生: 莊承諺
Chuang, Cheng-yen
論文名稱: 利用兩階式影音同步與頻寬適應性技術之分層式多媒體串流系統
A Layered Multimedia Streaming System Using the Two-phase Audiovisual Synchronization and Network Bandwidth Adaptation Techniques
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 45
中文關鍵詞: 條件式重傳多媒體串流網路延遲抖動消除影音播放同步
外文關鍵詞: BSAC, de-jitter, conditional retransmission, ubiquitous multimedia streaming, playout synchronization, FGS
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於無所不在之多媒體串流服務,一個利用分層式音訊/視訊編碼並可用於異質網路上之多媒體串流方案是需要的。此論文提出一個分層式音訊/視訊之串流方案,其中包含一個基於人類感知及預測可用頻寬之頻寬適應技術與兩階式影音同步技術。此論文提出之系統中,音訊與視訊利用BSAC (bit sliced arithmetic coding)與FGS (Fine-granular scalability)之編碼技術將其切割成一個基礎層與多個加強層。於兩階式影音同步技術中,利用分層式音訊/視訊編碼之優點,延遲抖動消除程序、條件式重傳及影音播放同步等技術可降低不穩定之網路環境與變動之解碼時間對同步播放所造成的影響。實驗結果顯示,論文中提出之方案是一個適用於在異質網路上傳輸之無所不在多媒體串流方案。

    For a ubiquitous multimedia streaming, an adaptive multimedia streaming scheme with multiple layered audiovisual (AV) coding is required over heterogeneous networks. This thesis proposes a multiple layered audiovisual streaming scheme to deliver layered audiovisual data. Fine-granular scalability (FGS) and bit sliced arithmetic coding (BSAC) techniques are used to segment video and audio data into individual base-layer and multiple enhancement-layer bitstreams. With advantages of layered coding, two phases of streaming synchronization are proposed based on the characteristic of the human-perception and the result of the bandwidth adaptation. The de-jitter procedure, conditional retransmission and playout synchronization are used to transmit hybrid multiple layered audiovisual bitstreams.
    Experiment results show that the proposed system is a feasible streaming scheme to overcome challenges of the ubiquitous multimedia streaming, e.g., constrained available bandwidth, quality degradation, unsmooth playback, etc.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2.1 The fine-granular-scalable video . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The fine-granule audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Objective difference grade and distortion index . . . . . . . . . . . . . . . .7 3 The System Architecture and Components . . . . . . . . . . . . . . . . . . . . . 9 4 The Adaptive Layered Audiovisual Transmission Scheme . . . . . . . . . . . . . . 13 5 The Two-phase Synchronization Scheme . . . . . . . . . . . . . . . . . . . . . . 18 5.1 The Phase-I streaming synchronization: De-Jitter procedure . . . . . . . . . . 18 5.2 The Phase-I streaming synchronization: Conditional retransmission . . . . . . .22 5.3 The Phase-II playout synchronization . . . . . . . . . . . . . . . . . . . . . 24 6 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.1 The configuration of the experimental environment . . . . . . . . . . . . . . .30 6.2 Evaluation on the Phase-I synchronization . . . . . . . . . . . . . . . . . . .33 6.3 Evaluation on the phase-II Synchronization . . . . . . . . . . . . . . . . . . 39 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    [1] A. Vetro, ”MPEG-21 digital item adaptation: enabling universal multimedia access”,
    IEEE Multimedia, VOL. 11, NO. 1, pp. 84-87, January-March 2004.
    [2] R. Rejaie, M. Handley, and D. Estrin, ”Layered quality adaptation for Internet video
    streaming”, IEEE Journal on Selected Areas in Communications, VOL. 18, NO. 12, pp.
    2530-2543, December 2000.
    [3] Y. Ishibashi and S. Tasaka, ”A comparative survey of synchronization algorithms for
    continuousmedia in network environments”, Proceedings of 25th Annual IEEE Conference
    on Local Computer Networks, pp. 337-348, November 2000.
    [4] N. Laoutaris and I. Stavrakakis, ”Intrastream synchronization for continuous media
    streams: a survey of playout schedulers”, IEEE Network Magazine, VOL. 16, NO. 3,
    pp. 30-40, May-June 2002.
    [5] K. Gao, W. Gao, S. He, P. Gao and Y. Zhang, ”Real-time scheduling on scalable media
    stream delivery”, Proceedings of the 2003 International Symposium on Circuits and
    Systems, VOL. 2, pp. 824-827, May 2003.
    [6] I. C. Chang, K. S. Huang, ”Synchronized multimedia multicast on mobile IP networks”,
    Proceedings of IEEE International Conference on Communications, VOL. 2, pp. 799-
    803, May 2003.
    [7] M. Claypool, Z. Yali, ”Using interleaving to ameliorate the effects of packet loss in
    a video stream”, Proceedings of International Conference on Distributed Computing
    Systems, pp. 508-513, May 2003.
    42
    [8] B. Bouallegue, H. Guesmi, R. Djemal, J. P. Diguet, R. Tourki, ”Performance analysis
    of interleaving for video communications over ATM networks”, Proceedings of IEEE
    International Conference on Systems, VOL. 3, October 2002.
    [9] C. Perkins, O. Hodson, V. Hardman, ”A survey of packet loss recovery techniques for
    streaming audio”, IEEE Network Magazine, VOL. 12, NO. 5, pp. 40-48, September
    1998.
    [10] H.C. Chuang, C.Y. Huang and T. Chiang, ”On the buffer dynamics of scalable video
    streaming over wireless network”, Proceedings of IEEE International Conference on
    Vehicular Technology, VOL. 4, pp. 2582-2586, September 2004.
    [11] Y. Ito and S. Tasaka, ”Smooth adaptive playout control for synchronized multicast media
    streaming”, Proceedings of International Symposium on Intelligent Signal Processing
    and Communication Systems, pp.129-132, November 2004.
    [12] J. Jo and J. W. Kim, ”Evaluation on the performance of adaptive playout for the multicast
    streaming of stored media”, Proceedings of IEEE International Conference on
    Communications, VOL. 1, pp. 542-546, May 2003.
    [13] H. Liu and M. E. Zarki, ”An adaptive delay and synchronization control scheme for
    Wi-Fi based audio/video conferencing”, ACM Wireless Networks, VOL. 12, NO. 4, pp.
    511-522, July 2006.
    [14] H. Zhu, I. Chlamtac, J. A. Cobb, G. Zeng, ”SMART: a synchronization scheme for
    providing multimedia quality in emerging wireless Internet”, Proceedings of IEEE 58th
    Vehicular Technology Conference, VOL. 5, pp. 3390-3394, October 2003.
    [15] H. Liu, W. J. Zhang, S. Y. Yu and J. Cai, ”A client-driven scalable cross-layer retransmission
    scheme for 3G video streaming”, Proceedings of IEEE International Conference
    on Multimedia and Expo, July 2005.
    43
    [16] H. Liu, W. Zhang, and X. Yang, ”Retransmission-based error spreading for layered
    video streaming over wireless LANs”, Proceedings of IEEE International Symposium
    on Circuits and Systems, pp.21-24, May 2006.
    [17] S. Aramwith, C. W. Lin, S. Roy, and M. T. Sun, ”Wireless video transport using conditional
    retransmission and lowdelay interleaving”, IEEE Transactions on Circuits and
    Systems for Video Technology, VOL. 12, NO. 6, pp. 558V565, June 2002.
    [18] M. Podolsky, M. Vetterli, S. McCanne, ”Limited retransmission of real-time layered
    multimedia”, Proceedings of IEEE Second Workshop on Multimedia Signal, pp. 591-
    596, December 1998.
    [19] S. Tasaka, T. Nunome, and Y. Ishibashi, ”Live media synchronization quality of a
    retransmission-based error recovery scheme”, Proceedings of IEEE International Conference
    on Communications, VOL. 3, pp. 1535-1541, June 2000.
    [20] C. M. Huang, C.W. Lin, C. C. Yang and X. Y. Lin, ”Network-aware multimedia streaming
    using the Kalman filter over the wired/wireless/3G networks”, Proceedings of IEEE
    International Conference on Multimedia and Expo., pp. 923-926, July 2007.
    [21] ”Information technology-Coding of audio-visual objects - Part 2: Visual”,ISO/IEC
    14496-2 JTC1/SC29/WG11/N2802, July 1999.
    [22] W. Li, ”Bit-Plane Coding of DCT Coefficients for Fine Granularity Scalability”,
    ISO/IEC JTC1/SC29/WGl1 MPEG98/M3989, October 1998.
    [23] R. Cohen, H. Radha, ”Streaming fine-grained scalable video over packet-based networks”,
    Proceedings of Global Telecommunications Conference, VOL. 1, pp. 288-292,
    November 2000.
    [24] Y. S. Tung, J. L. Wu, P. K. Hsiao, K. L. Huang, ”An efficient streaming and decoding
    architecture for stored FGS video”, IEEE Transactions on Circuits and Systems for Video
    Technology, VOL. 12, NO. 8, pp. 730-735 , August 2002.
    44
    [25] J. Zhou, H. Shaof, C. Shen and M.T. Sun ”FGS enhancement layer truncation with
    minimized intra-frame quality variation”, Proceedings of International Conference on
    Multimedia and Expo., VOL. 2, pp. 361-364, July 2003.
    [26] ”Information technology-Coding of audio-visual objects - Part 3: Audio”,ISO/IEC
    14496-3 JTC1/SC29/WG11/N2803, July 1999.
    [27] S. Lee, M. Choi, J. Kim, D. Kim, N. Eum and H. Jung, ”The MPEG-4 BSAC audio
    decoder in terrestrial DMB receiver”, Proceedings of IEEE International Conference on
    Consumer Electronics, pp. 257-258, January 2006.
    [28] B. Feiten, I. Wolf, E. Oh, J. Seo, and H.K. Kim, ”Audio adaptation according to usage
    environment and perceptual quality Metrics”, IEEE Transactions on Multimedia, VOL.
    7, NO. 3, pp. 446-453, June 2005.

    下載圖示 校內:2010-07-13公開
    校外:2010-07-13公開
    QR CODE