簡易檢索 / 詳目顯示

研究生: 蔡奕昕
Tsai, Yi-Hsin
論文名稱: 聚丁二醇酸丁二酯/聚左旋乳酸同軸電紡絲纖維之形貌與結晶行為探討
Studies of Morphology and Crystallization Behavior of Poly(Butylene Succinate)/Poly(L-Lactic Acid) Coaxial Electrospun Fibers
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 117
中文關鍵詞: 同軸靜電紡絲熱退火結晶行為熔融結晶水解
外文關鍵詞: coaxial electrospun fibers, , thermal annealing, crystallization behavior, melt crystallization, hydrolysis
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製備poly(butylene succinate) (PBS)/poly(L-lactic acid) (PLLA)同軸靜電紡絲纖維,其中芯為PBS,鞘為PLLA,討論不同參數對電紡絲纖維直徑及形貌的影響,並探討PBS和PLLA在同軸纖維中的熱性質和結晶行為。經過不同熱退火溫度處理後,PLLA的熔融峰由兩個吸熱峰組成,分別代表與α’和α的結晶型態,且熱退火溫度越高,α相的比例越高;而PBS則只出現單一的熔融峰。當熱退火溫度小於120 ˚C時,PBS和PLLA可以同時且獨立結晶,並沒有發現共結晶的現象,熔融焓與晶粒尺寸皆隨熱退火溫度上升而增加,但PBS熔點下降;當熱退火溫度為140 ˚C時,PBS轉變為非晶相而沒有結晶行為發生。此外,隨著熱退火溫度上升,PLLA的晶格間距變小,而PBS的晶格間距則維持不變。在PBS熔融結晶的研究中,結晶溫度會影響PBS及PLLA的結晶行為。當結晶溫度為80 ˚C時,PBS和PLLA因高溫下分子鏈的流動性較佳,在系統中兩高分子鏈段較容易各自聚集後結晶,生成的晶粒尺寸和結晶度皆較結晶溫度低時大,晶格間距則較結晶溫度低時小。在水解測試中,同軸纖維的重量損失百分比皆高於單一PBS和PLLA纖維,此特性有助於醫用材料領域的應用。

    In this study, we investigated the effects of various parameters on the diameter and morphology of the electrospun coaxial fibers, with poly(butylene succinate) (PBS as the core and poly(L-lactic acid) (PLLA) as the sheath, along with the thermal properties and crystallization behavior of PBS and PLLA within the coaxial fibers. After thermal treatment at different annealing temperatures, the melting peak of PLLA was composed of two endothermic peaks, corresponding to the α' and α crystalline forms, with a higher proportion of the α phase at higher annealing temperatures. In contrast, PBS exhibited a single melting peak. When the annealing temperature was below 120 °C, PBS and PLLA crystallized simultaneously and independently, without co-crystallization. The melting enthalpy and crystallite size of both polymers increased with higher annealing temperatures, while the melting point of PBS decreased. At an annealing temperature of 140 °C, PBS turned into an amorphous phase with no crystallization behavior observed. Additionally, as the annealing temperature increased, the lattice spacing of PLLA decreased, while that of PBS remained unchanged. In the study of PBS melt crystallization, the crystallization temperature affected the crystallization behavior of both PBS and PLLA. At a melt crystallization temperature of 80 °C, due to the better chain mobility at high temperatures, both polymer chains were more likely to aggregate and crystallize, resulting in larger crystallite size and degree of crystallinity compared to lower melt crystallization temperatures, with smaller lattice spacing. In hydrolytic degradation tests, the weight loss percentage of the coaxial fibers was higher than that of single PBS and PLLA fibers, a characteristic beneficial for applications in the medical materials field.

    摘要 I Extended abstract II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 靜電紡絲(electrospinning) 3 2.1.1 靜電紡絲介紹 3 2.1.2 同軸靜電紡絲 4 2.1.3 靜電紡絲參數 5 2.1.4 靜電紡絲溶劑 9 2.2 高分子結晶 13 2.2.1 經典成核理論 14 2.2.2 等溫結晶動力學 16 2.2.3 非等溫結晶動力學 18 2.2.4 聚乳酸與聚丁二醇酸丁二酯結晶型態 21 2.3 受限結晶 26 2.3.1 團聯共聚物系統之受限結晶 27 2.3.2 陽極氧化鋁模板內的結晶行為 29 2.3.3 靜電紡絲系統的結晶行為 32 第三章 實驗 35 3.1 實驗藥品 35 3.2 實驗器材 36 3.3 同軸電紡絲製造 37 3.4 性質分析 39 3.4.1 掃描式電子顯微鏡 39 3.4.2 穿透式電子顯微鏡 39 3.4.3 熱重分析儀 39 3.4.4 熱差式掃描熱分析儀 39 3.4.5 廣角X光繞射儀 40 3.4.6 靜電紡絲纖維水解程度測試 40 第四章 結果與討論 41 4.1 參數對纖維直徑的影響 41 4.1.1 溶液濃度對PBS/PLLA同軸電紡絲纖維直徑的影響 41 4.1.2 流率對PBS/PLLA同軸電紡絲纖維直徑的影響 45 4.1.3 針尖到收集板之間的距離對PBS/PLLA同軸電紡絲纖維直徑的影響 46 4.1.4 電壓對PBS/PLLA同軸電紡絲纖維直徑的影響 47 4.1.5 溶劑對PBS/PLLA同軸電紡絲纖維直徑的影響 48 4.2 PBS/PLLA同軸纖維之熱性質分析 52 4.3 PBS/PLLA同軸纖維之結晶行為 66 4.3.1 冷結晶之結晶行為 67 4.3.2 熔融結晶之結晶行為 80 4.4 PBS/PLLA同軸纖維之水解 84 第五章 結論 88 第六章 參考文獻 89

    1. Mazzola, L., Commercializing nanotechnology. Nature Biotechnology, 21(10): p. 1137-1143, 2003.
    2. Moghe, A. and B. Gupta, Co‐axial electrospinning for nanofiber structures: preparation and applications. Polymer Reviews,.48(2): p. 353-377, 2008.
    3. Han, D. and A.J. Steckl, Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem, 84(10): p. 1453-1497, 2019.
    4. Nguyen, D.-N. and W. Moon, Significant Electromechanical Characteristic Enhancement of Coaxial Electrospinning Core–Shell Fibers. Polymers, 14(9): p. 1739, 2022.
    5. Fukushima, K., M. Hirata, and Y. Kimura, Synthesis and characterization of stereoblock poly (lactic acid) s with nonequivalent D/L sequence ratios. Macromolecules, 40(9): p. 3049-3055, 2007.
    6. Kim, J. K., Park, D. J., Lee, M. S., and Ihn, K. J., Synthesis and crystallization behavior of poly (l-lactide)-block-poly (ϵ-caprolactone) copolymer. Polymer, 42(17): p. 7429-7441, 2001.
    7. Martin, O. and L. Avérous, Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14): p. 6209-6219, 2001.
    8. Xu, J. and B.H. Guo, Poly (butylene succinate) and its copolymers: Research, development and industrialization. Biotechnology journal, 5(11): p. 1149-1163, 2010.
    9. Mtibe, A., Muniyasamy, S., Mokhena, T. C., Ofosu, O., Ojijo, V., and John, M., Recent insight into the biomedical applications of polybutylene succinate and polybutylene succinate-based materials. Express Polymer Letters, 17(1): p. 2-28, 2023.
    10. Yokohara, T. and M. Yamaguchi, Structure and properties for biomass-based polyester blends of PLA and PBS. European Polymer Journal, 44(3): p. 677-685, 2008.
    11. Wang, Y. P., Xiao, Y. J., Duan, J., Yang, J. H., Wang, Y., and Zhang, C. L., Accelerated hydrolytic degradation of poly (lactic acid) achieved by adding poly (butylene succinate). Polymer Bulletin, 73: p. 1067-1083, 2016.
    12. Su, S., Kopitzky, R., Tolga, S., and Kabasci, S., Polylactide (PLA) and its blends with poly (butylene succinate)(PBS): A brief review. Polymers, 11(7): p. 1193, 2019.
    13. Frenot, A. and I.S. Chronakis, Polymer nanofibers assembled by electrospinning. Current opinion in colloid & interface science, 8(1): p. 64-75, 2003.
    14. Tekmen, C., Y. Tsunekawa, and H. Nakanishi, Electrospinning of carbon nanofiber supported Fe/Co/Ni ternary alloy nanoparticles. Journal of Materials Processing Technology, 210(3): p. 451-455, 2010.
    15. Elahi, M. F., Lu, W., Guoping, G., and Khan, F., Core-shell fibers for biomedical applications-a review. Journal of Bioengineering and Biomedical Science, 3(1): p. 1-14, 2013.
    16. Reneker, D.H. and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3): p. 216, 1996.
    17. Zhao, J., Cheng, Y., Yan, X., Sun, D., Zhu, F., & Xue, Q., Magnetic and electrochemical properties of CuFe 2 O 4 hollow fibers fabricated by simple electrospinning and direct annealing. CrystEngComm, 14(18): p. 5879-5885, 2012.
    18. Lang, L., D. Wu, and Z. Xu, Controllable fabrication of TiO2 1D‐Nano/Micro structures: solid, hollow, and tube‐in‐tube fibers by electrospinning and the photocatalytic performance. Chemistry–A European Journal, 18(34): p. 10661-10668, 2012.
    19. Han, D., S.T. Boyce, and A.J. Steckl, Versatile core-sheath biofibers using coaxial electrospinning. MRS Online Proceedings Library (OPL), 1094: p. 1094-DD06-02, 2008.
    20. Qu, H., S. Wei, and Z. Guo, Coaxial electrospun nanostructures and their applications. Journal of Materials Chemistry A, 1(38): p. 11513-11528, 2013.
    21. Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., and Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43(16): p. 4403-4412, 2002.
    22. Lee, K. H., Kim, H. Y., Bang, H. J., Jung, Y. H., and Lee, S. G., The change of bead morphology formed on electrospun polystyrene fibers. Polymer, 44(14): p. 4029-4034, 2003.
    23. Yuan, X., Zhang, Y., Dong, C., and Sheng, J., Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 53(11): p. 1704-1710, 2004.
    24. Deitzel, J. M., Kleinmeyer, J., Harris, D. E. A., and Tan, N. B., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1): p. 261-272, 2001.
    25. Koski, A., K. Yim, and S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3-4): p. 493-497, 2004.
    26. Buchko, C. J., Chen, L. C., Shen, Y., and Martin, D. C., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 40(26): p. 7397-7407, 1999.
    27. Hansen, C.M. and A.L. Smith, Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers. Carbon, 42(8-9): p. 1591-1597, 2004.
    28. Lee, K. H., Kim, H. Y., La, Y. M., Lee, D. R., and Sung, N. H., Influence of a mixing solvent with tetrahydrofuran and N, N‐dimethylformamide on electrospun poly (vinyl chloride) nonwoven mats. Journal of Polymer Science Part B: Polymer Physics, 40(19): p. 2259-2268, 2002.
    29. Pant, B., M. Park, and S.-J. Park, Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics, 11(7): p. 305, 2019.
    30. Lu, Y., Huang, J., Yu, G., Cardenas, R., Wei, S., Wujcik, E. K., and Guo, Z.., Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8(5): p. 654-677, 2016.
    31. Amiraliyan, N., M. Nouri, and M.H. Kish, Effects of some electrospinning parameters on morphology of natural silk‐based nanofibers. Journal of Applied Polymer Science, 113(1): p. 226-234, 2009.
    32. Karthika, S., T. Radhakrishnan, and P. Kalaichelvi, A review of classical and nonclassical nucleation theories. Crystal Growth & Design, 16(11): p. 6663-6681, 2016.
    33. Shirzad, K. and C. Viney, A critical review on applications of the Avrami equation beyond materials science. Journal of the Royal Society Interface, 20(203): p. 20230242, 2023.
    34. William, D.C., Materials science and engineering: an introduction. John Wiley, 2014.
    35. Avrami, M., Kinetics of phase change. I General theory. The Journal of chemical physics, 7(12): p. 1103-1112, 1939.
    36. Evans, U.R., The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Transactions of the Faraday Society, 41: p. 365-374, 1945.
    37. Hay, J.N., Application of the modified avrami equations to polymer crystallisation kinetics. British Polymer Journal, 3(2): p. 74-82, 1971.
    38. Di Lorenzo, M. and C. Silvestre, Non-isothermal crystallization of polymers. Progress in Polymer Science, 24(6): p. 917-950, 1999.
    39. Apiwanthanakorn, N., P. Supaphol, and M. Nithitanakul, Non-isothermal melt-crystallization kinetics of poly (trimethylene terephthalate). Polymer Testing, 23(7): p. 817-826, 2004.
    40. Ozawa, T., Kinetics of non-isothermal crystallization. Polymer, 12(3): p. 150-158, 1971.
    41. Liu, T., Mo, Z., Wang, S., and Zhang, H., Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polymer Engineering & Science, 37(3): p. 568-575, 1997.
    42. Wasanasuk, K., Tashiro, K., Hanesaka, M., Ohhara, T., Kurihara, K., Kuroki, R., and Kanamoto, T., Crystal structure analysis of poly (l-lactic acid) α form on the basis of the 2-dimensional wide-angle synchrotron X-ray and neutron diffraction measurements. Macromolecules, 44(16): p. 6441-6452, 2011.
    43. Wang, H., J. Zhang, and K. Tashiro, Phase transition mechanism of poly (l-lactic acid) among the α, δ, and β forms on the basis of the reinvestigated crystal structure of the β form. Macromolecules, 50(8): p. 3285-3300, 2017.
    44. Lotz, B., Li, G., Chen, X., and Puiggali, J., Crystal polymorphism of polylactides and poly (Pro-alt-CO): The metastable beta and gamma phases. Formation of homochiral PLLA phases in the PLLA/PDLA blends. Polymer, 115: p. 204-210, 2017.
    45. Wasanasuk, K. and K. Tashiro, Structural regularization in the crystallization process from the glass or melt of poly (L-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings. Macromolecules, 44(24): p. 9650-9660, 2011.
    46. Xu, J. and B.-H. Guo, Microbial succinic acid, its polymer poly (butylene succinate), and applications. Plastics from Bacteria: Natural Functions and Applications, p. 347-388, 2010.
    47. Park, J.W. and S.S. Im, Phase behavior and morphology in blends of poly (L‐lactic acid) and poly (butylene succinate). Journal of Applied Polymer Science, 86(3): p. 647-655, 2002.
    48. Wang, R., Wang, S., Zhang, Y., Wan, C., and Ma, P., Toughening modification of PLLA/PBS blends via in situ compatibilization. Polymer Engineering & Science, 49(1): p. 26-33, 2009.
    49. Samanta, P., Liu, C. L., Nandan, B., and Chen, H. L., Crystallization of polymers in confined space, Crystallization in Multiphase Polymer Systems. Elsevier., p. 367-431, 2018.
    50. Michell, R.M. and A.J. Müller, Confined crystallization of polymeric materials. Progress in Polymer Science, 54: p. 183-213, 2016.
    51. Nakagawa, S., H. Marubayashi, and S. Nojima, Crystallization of polymer chains confined in nanodomains. European Polymer Journal, 70: p. 262-275, 2015.
    52. Liu, G., A.J. Muller, and D. Wang, Confined crystallization of polymers within nanopores. Accounts of Chemical Research, 54(15): p. 3028-3038, 2021.
    53. Safari, M., Maiz, J., Shi, G., Juanes, D., Liu, G., Wang, D., and Müller, A. J., How confinement affects the nucleation, crystallization, and dielectric relaxation of poly (butylene succinate) and poly (butylene adipate) infiltrated within nanoporous alumina templates. Langmuir, 35(47): p. 15168-15179, 2019.
    54. Jiang, Q. and M.D. Ward, Crystallization under nanoscale confinement. Chemical Society Reviews, 43(7): p. 2066-2079, 2014.
    55. Liu, Y., Cui, L., Guan, F., Gao, Y., Hedin, N. E., Zhu, L., & Fong, H., Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules, 40(17): p. 6283-6290, 2007.
    56. Luo, H., Huang, Y., Wang, D., and Shi, J., Coaxial‐electrospinning as a new method to study confined crystallization of polymer. Journal of Polymer Science Part B: Polymer Physics, 51(5): p. 376-383, 2013.
    57. Bhardwaj, N. and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3): p. 325-347, 2010.
    58. Tsuji, H. and K. Sumida, Poly (l‐lactide): V. effects of storage in swelling solvents on physical properties and structure of poly (l‐lactide). Journal of Applied Polymer Science, 79(9): p. 1582-1589, 2001.
    59. Reano, A. F., Domenek, S., Pernes, M., Beaugrand, J., & Allais, F., Ferulic acid-based bis/trisphenols as renewable antioxidants for polypropylene and poly (butylene succinate). ACS Sustainable Chemistry & Engineering, 4(12): p. 6562-6571, 2016.
    60. Fortunati, E., Puglia, D., Iannoni, A., Terenzi, A., Kenny, J. M., and Torre, L., Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)/poly (butylene succinate) films. Materials, 10(7): p. 809, 2016.
    61. Guenthner, A. J., Khombhongse, S., Liu, W., Dayal, P., Reneker, D. H., and Kyu, T., Dynamics of hollow nanofiber formation during solidification subjected to solvent evaporation. Macromolecular Theory and Simulations, 15(1): p. 87-93, 2006.
    62. Dayal, P. and T. Kyu, Porous fiber formation in polymer-solvent system undergoing solvent evaporation. Journal of Applied Physics, 100(4), 2006.
    63. Huang, J., Cao, Y., Huang, Z., Imbraguglio, S. A., Wang, Z., Peng, X., and Guo, Z., Macromol. Mater. Eng. 11/2016. Macromolecular Materials and Engineering, 11(301): p. 1281-1281, 2016.
    64. Young, J.A., Dichloromethane. Journal of Chemical Education, 81(10): p. 1415, 2004.
    65. Lang, Y.H., Z.M. Cao, and X. Jiang, Prediction of solvents extraction—the organochlorine pesticides in soil using solubility parameter. Talanta, 66(1): p. 249-252, 2005.
    66. Bešter-Rogač, M., Hunger, J., Stoppa, A., and Buchner, R., 1-Ethyl-3-methylimidazolium ethylsulfate in water, acetonitrile, and dichloromethane: molar conductivities and association constants. Journal of Chemical & Engineering Data, 56(4): p. 1261-1267, 2001.
    67. Sato, S., Gondo, D., Wada, T., Kanehashi, S., and Nagai, K., Effects of various liquid organic solvents on solvent‐induced crystallization of amorphous poly (lactic acid) film. Journal of Applied Polymer Science, 129(3): p. 1607-1617, 2013.
    68. Tsutsumi, S., Kato, Y., Namba, K., and Yamamoto, H., Functional composite material design using Hansen solubility parameters. Results in Materials, 4: p. 100046, 2019.
    69. Maleki, H., Gharehaghaji, A. A., Moroni, L., and Dijkstra, P. J., Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns. Biofabrication, 5(3): p. 035014, 2013.
    70. Mainar, A. M., Pardo, J., Royo, F. M., López, M. C., and Urieta, J. S., Solubility of nonpolar gases in 2, 2, 2-trifluoroethanol at 25° C and 101.33 kPa partial pressure of gas. Journal of Solution Chemistry, 25: p. 589-595, 1996.
    71. Nakajima, H., M. Takahashi, and Y. Kimura, Induced Crystallization of PLLA in the Presence of 1, 3, 5‐Benzenetricarboxylamide Derivatives as Nucleators: Preparation of Haze‐Free Crystalline PLLA Materials. Macromolecular Materials and Engineering, 295(5): p. 460-468, 2010.
    72. Correlo, V. M., Boesel, L. F., Pinho, E., Costa‐Pinto, A. R., Alves da Silva, M. L., Bhattacharya, M., and Reis, R. L., Melt‐based compression‐molded scaffolds from chitosan–polyester blends and composites: Morphology and mechanical properties. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 91(2): p. 489-504, 2009.
    73. Kadowaki, Y. and K. Kojio, Crystallization behavior of biodegradable poly (L-lactic acid)(PLLA)/poly (butylene succinate)(PBS) blends based on in situ simultaneous wide-angle X-ray diffraction/small-angle X-ray scattering techniques and thermal analyses. Journal of Polymer Research, 29(4): p. 137, 2022.
    74. Pan, P., Zhu, B., Kai, W., Dong, T., and Inoue, Y., Polymorphic transition in disordered poly (L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules, 41(12): p. 4296-4304, 2008.
    75. Wu, D., Yuan, L., Laredo, E., Zhang, M., and Zhou, W., Interfacial properties, viscoelasticity, and thermal behaviors of poly (butylene succinate)/polylactide blend. Industrial & Engineering Chemistry Research, 51(5): p. 2290-2298, 2012.
    76. Zhang, X., Liu, Q., Shi, J., Ye, H., and Zhou, Q., Distinctive Tensile Properties of the Blends of Poly (l-lactic acid)(PLLA) and Poly (butylene succinate)(PBS). Journal of Polymers and the Environment, 26: p. 1737-1744, 2018.
    77. Gan, Z., Abe, H., Kurokawa, H., and Doi, Y., Solid-state microstructures, thermal properties, and crystallization of biodegradable poly (butylene succinate)(PBS) and its copolyesters. Biomacromolecules, 2(2): p. 605-613, 2001.
    78. Huang, X., Li, C., Zhu, W., Zhang, D., Guan, G., and Xiao, Y., Ultraviolet‐induced crosslinking of poly (butylene succinate) and its thermal property, dynamic mechanical property, and biodegradability. Polymers for Advanced Technologies, 22(5): p. 648-656, 2011.
    79. Zhang, J., Tashiro, K., Tsuji, H., and Domb, A. J., Disorder-to-order phase transition and multiple melting behavior of poly (L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules, 41(4): p. 1352-1357, 2008.
    80. un, Y. S., Chung, T. M., Li, Y. J., Ho, R. M., Ko, B. T., and Jeng, U. S., Crystal Orientation within Lamellae-Forming Block Copolymers of Semicrystalline Poly (4-vinylpyridine)-b-poly (E-caprolactone). Macromolecules, 40(18): p. 6778, 2007.
    81. Chuakhao, S., Rodríguez, J. T., Lapnonkawow, S., Kannan, G., Müller, A. J., and Suttiruengwong, S., Formulating PBS/PLA/PBAT blends for biodegradable, compostable packaging: The crucial roles of PBS content and reactive extrusion. Polymer Testing: p. 108383, 2024.
    82. Di Lorenzo, M.L., Poly (l-lactic acid)/poly (butylene succinate) biobased biodegradable blends. Polymer Reviews,. 61(3): p. 457-492, 2021.

    無法下載圖示 校內:2029-08-13公開
    校外:2029-08-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE