簡易檢索 / 詳目顯示

研究生: 張裕瑋
Jhang, Yu-Wei
論文名稱: 探討抗HIV/AIDS藥物 Indinavir作為抗人類抗癌藥物的可能性
Evaluation on the possibility of repositioning a FDA-approved anti-HIV/AIDS drug, Indinavir, as an anti-human cancer drug
指導教授: 張雋曦
Cheung, Chun Hei Antonio
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 89
中文關鍵詞: HIV 蛋白酶抑製劑Indinavir細胞凋亡壞死性凋亡
外文關鍵詞: HIV protease inhibitor, Indinavir, Apoptosis, Necroptosis
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Indinavir為高效抗反轉錄病毒治療(Highly Active Anti-Retroviral Therapy, HAART)的一種 HIV蛋白酶抑製劑用於治療 HIV / AIDS患者,有趣的是,一些研究結果認為 Indinavir是一個具有潛力的抗癌藥物。然而,其確切的抗癌作用機制尚不清楚。在本研究中,我們的目的是去探討 Indinavir應用在治療人類癌症的可能性,並了解其在癌症細胞中的作用分子機制。

    在我們的研究中發現當 Indinavir在濃度介於180 - 285 μM的條件下 MCF-7(caspase-3缺陷,野生型p53表達)、MDA-MB-231、SK-BR-3(caspase-3和突變型p53表達)、KB(非表達MDR-1)和KB-VIN10(表達MDR-1)癌細胞中具有促細胞死亡的作用 ,有趣的是,在分子層次上,我們發現在 MDA-MB-231和 SK-BR-3細胞中 Indinavir會誘導 ROS依賴性DNA損傷、G2 / M期的細胞週期停滯、典型細胞凋亡,但是在MCF-7細胞則不然。 令人驚訝的是,在分析RNAseq產生的KEGG分析結果和西方墨點法的結果發現在MCF-7細胞中其細胞死亡與典型細胞凋亡無關,但類似於壞死樣凋亡的分子變化。

    綜合以上結果,我們的研究結果表明 Indinavir在不同的癌細胞中表現出不同的抗癌作用機制。了解 Indinavir在不同分子圖譜的癌細胞中的分子功能上的差異可為選擇其他潛在治療藥物提供重要信息,這些治療藥物可與 Indinavir一起用於未來癌症治療的合併療法中。

    Indinavir is a HIV-protease inhibitor used as a highly active antiretroviral therapy (Highly Active Anti-Retroviral Therapy, HAART) for HIV/AIDS patients. Interestingly, findings of a few studies suggested Indinavir as a potential anti-cancer agent. However, the underlying anti-cancer mechanism of actions remains unclear. In this study, we aim to evaluate the possibility of using Indinavir in treating human cancers with different molecular profiles and also to uncover its molecular mechanism of actions in cancer cells.

    In the current study, we found that Indinavir exhibits pro-cell death effects in MCF7 (caspase-3 deficient, wild-type p53 expressing), MDA-MB-231 and SK-BR-3 (caspase-3 and mutant p53 expressing), KB (MDR-1 non-expressing), and KB-VIN10 (KB-derived MDR-1 expressing) cancer cells at concentrations from 180 - 285 μM. Intriguingly, at the cellular and molecular levels, Indinavir induced ROS-dependent DNA damage, cell cycle arrested at the G2/M phase, and canonical apoptosis in MDA-MB-231 and SK-BR-3, but not in MCF-7 cells. Surprisingly, results of the KEGG enrichment analysis on data generated from RNAseq and the Western blot analysis showed that the same treatment induced canonical apoptosis-unrelated, but necroptosis-like, molecular changes in MCF7 cells.

    Taken together, our findings indicate that Indinavir exhibits differential anti-cancer mechanism of actions in different cancer cells. Understanding the differential molecular functions of Indinavir in cancer cells with different molecular profiles may provide important information for selecting other potential therapeutic agents that can be used together with Indinavir as combination therapy for cancer treatment in the future.

    中文摘要 I ABSTRACT IV 致謝 VII Abbreviation IX List of Tables XI List of Figures XII List of Appendices XIV INTRODUCTION 1 1.1. Indinavir 2 1.1.1. Introduction 2 1.1.2. Indinavir and cancer 2 1.2. Reactive Oxygen Species 3 1.2.1. Introduction 3 1.2.2. The source of ROS 4 1.2.3. ROS scavenging system 5 1.2.4. ROS and cancer 6 1.3. Cell cycle 7 1.4. Apoptosis 8 1.4.1. Mechanism of apoptosis 8 1.5. Necroptosis 10 1.6. Mechanisms of drug resistance 11 1.6.1. MDR1 and p53 11 1.7. Aim of this study 13 MATERIALS AND METHODS 14 2.1 Materials 15 2.2 Recipes 19 2.3 Methods 23 2.3.1 Cells and culture 23 2.3.2 MTT cell viability assay 23 2.3.3 Dihydroethidium (DHE) staining 24 2.3.4 MitosoxTM Red staining 24 2.3.5 Western blot analysis 25 2.3.6 SOD1 activity in-gel assay 26 2.3.7 Cell cycle analysis. 26 2.3.8 Comet assay 27 2.3.9 Immunofluorescence microscopy 28 2.3.10 JC-1 staining 28 2.3.11 RNA Sequencing 29 2.3.12 Statistical analysis 30 RESULTS 31 3.1 Indinavir exhibits similar potency in cancer cells with different p53, caspase-3, and MDR-1 expression status 32 3.2 Indinavir increases ROS levels in MDA-MB-231 and SK-BR-3 cells 32 3.3 Indinavir induces ROS-dependent DNA damage in MDA-MB-231 and SK-BR-3 cells 34 3.4 Indinavir induces G2/M phase cell cycle arrest in MDA-MB-231 and SK-BR-3 cells 35 3.5 Indinavir induces canonical intrinsic apoptosis in caspase-3 expressing breast cancer cells 35 3.6 Indinavir does not induce the nuclear translocation of apoptotic-inducing factor (AIF) in breast cancer cells 36 3.7 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of Indinavir-treated MCF-7 and MDA-MB-231 cells 37 3.8 Indinavir upregulates p53 expression in breast cancer cells 38 3.9 Indinavir induces necroptosis in MCF-7 cells 38 DISCUSSION AND CONCLUSIONS 40 4.1. Discussion 41 4.2. Conclusion 43 REFERENCES 44 TABLES 57 FIGURES 60 APPENDICES 86

    AbdulSalam, S. F., Thowfeik, F. S., & Merino, E. J. (2016). Excessive Reactive Oxygen Species and Exotic DNA Lesions as an Exploitable Liability. Biochemistry, 55(38), 5341-5352. doi:10.1021/acs.biochem.6b00703
    Achanta, G., & Huang, P. (2004). Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res, 64(17), 6233-6239. doi:10.1158/0008-5472.CAN-04-0494
    Barillari, G., Iovane, A., Bacigalupo, I., Labbaye, C., Chiozzini, C., Sernicola, L., . . . Ensoli, B. (2014). The HIV protease inhibitor indinavir down-regulates the expression of the pro-angiogenic MT1-MMP by human endothelial cells. Angiogenesis, 17(4), 831-838. doi:10.1007/s10456-014-9430-9
    Barnum, K. J., & O'Connell, M. J. (2014). Cell cycle regulation by checkpoints. Methods Mol Biol, 1170, 29-40. doi:10.1007/978-1-4939-0888-2_2
    Batista, L. F., Kaina, B., Meneghini, R., & Menck, C. F. (2009). How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat Res, 681(2-3), 197-208. doi:10.1016/j.mrrev.2008.09.001
    Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem, 44(1), 276-287. doi:10.1016/0003-2697(71)90370-8
    Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 87(1), 245-313. doi:10.1152/physrev.00044.2005
    Blandino, G., Levine, A. J., & Oren, M. (1999). Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene, 18(2), 477-485. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9927204
    Bonizzi, G., Piette, J., Schoonbroodt, S., Greimers, R., Havard, L., Merville, M. P., & Bours, V. (1999). Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1beta requires 5-lipoxygenase or NADPH oxidase activity. Mol Cell Biol, 19(3), 1950-1960. doi:10.1128/mcb.19.3.1950
    Boyd, M. (2007). Indinavir: the forgotten HIV-protease inhibitor. Does it still have a role? Expert Opin Pharmacother, 8(7), 957-964. doi:10.1517/14656566.8.7.957
    Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., & Shore, G. C. (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 22(53), 8608-8618. doi:10.1038/sj.onc.1207108
    Brigelius-Flohe, R., & Maiorino, M. (2013). Glutathione peroxidases. Biochim Biophys Acta, 1830(5), 3289-3303. doi:10.1016/j.bbagen.2012.11.020
    Brumatti, G., Ma, C., Lalaoui, N., Nguyen, N. Y., Navarro, M., Tanzer, M. C., . . . Silke, J. (2016). The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Sci Transl Med, 8(339), 339ra369. doi:10.1126/scitranslmed.aad3099
    Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med, 29(3-4), 222-230. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11035250
    Cai, Z., Jitkaew, S., Zhao, J., Chiang, H. C., Choksi, S., Liu, J., . . . Liu, Z. G. (2014). Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol, 16(1), 55-65. doi:10.1038/ncb2883
    CHAFFEY, N. (2003). Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. Molecular biology of the cell. 4th edn. Annals of Botany, 91(3), 401-401. doi:10.1093/aob/mcg023
    Chen, X., Qian, Y., & Wu, S. (2015). The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med, 79, 253-263. doi:10.1016/j.freeradbiomed.2014.08.027
    Choi, C. H. (2005). ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int, 5, 30. doi:10.1186/1475-2867-5-30
    Colbert, L. E., Fisher, S. B., Hardy, C. W., Hall, W. A., Saka, B., Shelton, J. W., . . . Yu, D. S. (2013). Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer, 119(17), 3148-3155. doi:10.1002/cncr.28144
    Cooper, G. (2000). The Cell: A Molecular Approach: Sinauer Associates Inc.
    Deng, W., Baki, L., Yin, J., Zhou, H., & Baumgarten, C. M. (2010). HIV protease inhibitors elicit volume-sensitive Cl- current in cardiac myocytes via mitochondrial ROS. J Mol Cell Cardiol, 49(5), 746-752. doi:10.1016/j.yjmcc.2010.08.013
    Devasagayam, T. P., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India, 52, 794-804. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15909857
    Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol Rev, 82(1), 47-95. doi:10.1152/physrev.00018.2001
    Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4), 495-516. doi:10.1080/01926230701320337
    Esposito, V., Palescandolo, E., Spugnini, E. P., Montesarchio, V., De Luca, A., Cardillo, I., . . . Chirianni, A. (2006). Evaluation of antitumoral properties of the protease inhibitor indinavir in a murine model of hepatocarcinoma. Clin Cancer Res, 12(8), 2634-2639. doi:10.1158/1078-0432.CCR-05-2188
    Essentials of Human Anatomy and Physiology, 3rd edition. (1991). Nurs Stand, 6(2), 48. doi:10.7748/ns.6.2.48.s61
    Feng, X., Song, Q., Yu, A., Tang, H., Peng, Z., & Wang, X. (2015). Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma, 62(4), 592-601. doi:10.4149/neo_2015_071
    Galadari, S., Rahman, A., Pallichankandy, S., & Thayyullathil, F. (2017). Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med, 104, 144-164. doi:10.1016/j.freeradbiomed.2017.01.004
    Goldstein, I., Marcel, V., Olivier, M., Oren, M., Rotter, V., & Hainaut, P. (2011). Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther, 18(1), 2-11. doi:10.1038/cgt.2010.63
    Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., . . . Liu, C. (2019). The role of necroptosis in cancer biology and therapy. Mol Cancer, 18(1), 100. doi:10.1186/s12943-019-1029-8
    Gratton, R., Tricarico, P. M., Guimaraes, R. L., Celsi, F., & Crovella, S. (2018). Lopinavir/Ritonavir Treatment Induces Oxidative Stress and Caspaseindependent Apoptosis in Human Glioblastoma U-87 MG Cell Line. Curr HIV Res, 16(2), 106-112. doi:10.2174/1570162X16666180528100922
    Gualberto, A., Aldape, K., Kozakiewicz, K., & Tlsty, T. D. (1998). An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc Natl Acad Sci U S A, 95(9), 5166-5171. doi:10.1073/pnas.95.9.5166
    Halliwell, B. (2007). Oxidative stress and cancer: have we moved forward? Biochem J, 401(1), 1-11. doi:10.1042/BJ20061131
    Hampson, L., Kitchener, H. C., & Hampson, I. N. (2006). Specific HIV protease inhibitors inhibit the ability of HPV16 E6 to degrade p53 and selectively kill E6-dependent cervical carcinoma cells in vitro. Antivir Ther, 11(6), 813-825. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17310826
    Hanschmann, E. M., Godoy, J. R., Berndt, C., Hudemann, C., & Lillig, C. H. (2013). Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal, 19(13), 1539-1605. doi:10.1089/ars.2012.4599
    Hasan, S., Taha, R., & Omri, H. E. (2018). Current Opinions on Chemoresistance: An Overview. Bioinformation, 14(2), 80-85. doi:10.6026/97320630014080
    He, L., Peng, K., Liu, Y., Xiong, J., & Zhu, F. F. (2013). Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients. Onco Targets Ther, 6, 1539-1543. doi:10.2147/OTT.S52805
    He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., & Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137(6), 1100-1111. doi:10.1016/j.cell.2009.05.021
    Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770-776. doi:10.1038/35037710
    Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., . . . Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol, 1(6), 489-495. doi:10.1038/82732
    Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. (2014). Drug resistance in cancer: an overview. Cancers (Basel), 6(3), 1769-1792. doi:10.3390/cancers6031769
    Hsiao, M., Low, J., Dorn, E., Ku, D., Pattengale, P., Yeargin, J., & Haas, M. (1994). Gain-of-function mutations of the p53 gene induce lymphohematopoietic metastatic potential and tissue invasiveness. Am J Pathol, 145(3), 702-714. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8080050
    Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., & Foster, D. A. (2006). Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene, 25(55), 7305-7310. doi:10.1038/sj.onc.1209735
    Ikezoe, T., Daar, E. S., Hisatake, J., Taguchi, H., & Koeffler, H. P. (2000). HIV-1 protease inhibitors decrease proliferation and induce differentiation of human myelocytic leukemia cells. Blood, 96(10), 3553-3559. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11071654
    Jensen, K., Bikas, A., Patel, A., Kushchayeva, Y., Costello, J., McDaniel, D., . . . Vasko, V. (2017). Nelfinavir inhibits proliferation and induces DNA damage in thyroid cancer cells. Endocr Relat Cancer, 24(3), 147-156. doi:10.1530/ERC-16-0568
    Jiang, B., Xiao, W., Shi, Y., Liu, M., & Xiao, X. (2005). Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperones, 10(3), 252-262. doi:10.1379/csc-124r.1
    Jin, Z., & El-Deiry, W. S. (2005). Overview of cell death signaling pathways. Cancer Biol Ther, 4(2), 139-163. doi:10.4161/cbt.4.2.1508
    Johnson, D. G., & Walker, C. L. (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39, 295-312. doi:10.1146/annurev.pharmtox.39.1.295
    Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., . . . Penninger, J. M. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 410(6828), 549-554. doi:10.1038/35069004
    Kaczmarek, A., Vandenabeele, P., & Krysko, D. V. (2013). Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity, 38(2), 209-223. doi:10.1016/j.immuni.2013.02.003
    Kensler, T. W., Wakabayashi, N., & Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol, 47, 89-116. doi:10.1146/annurev.pharmtox.46.120604.141046
    King, K. L., & Cidlowski, J. A. (1998). Cell cycle regulation and apoptosis. Annu Rev Physiol, 60, 601-617. doi:10.1146/annurev.physiol.60.1.601
    Klatt, P., Molina, E. P., De Lacoba, M. G., Padilla, C. A., Martinez-Galesteo, E., Barcena, J. A., & Lamas, S. (1999). Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J, 13(12), 1481-1490. doi:10.1096/fasebj.13.12.1481
    Klaunig, J. E., Kamendulis, L. M., & Hocevar, B. A. (2010). Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol, 38(1), 96-109. doi:10.1177/0192623309356453
    Koo, G. B., Morgan, M. J., Lee, D. G., Kim, W. J., Yoon, J. H., Koo, J. S., . . . Kim, Y. S. (2015). Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res, 25(6), 707-725. doi:10.1038/cr.2015.56
    Koundouros, N., & Poulogiannis, G. (2018). Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer. Front Oncol, 8, 160. doi:10.3389/fonc.2018.00160
    Kovach, J. S., McGovern, R. M., Cassady, J. D., Swanson, S. K., Wold, L. E., Vogelstein, B., & Sommer, S. S. (1991). Direct sequencing from touch preparations of human carcinomas: analysis of p53 mutations in breast carcinomas. J Natl Cancer Inst, 83(14), 1004-1009. doi:10.1093/jnci/83.14.1004
    Krammer, P. H., Kaminski, M., Kiessling, M., & Gulow, K. (2007). No life without death. Adv Cancer Res, 97, 111-138. doi:10.1016/S0065-230X(06)97005-5
    Kumar, P., Lodge, R., Trudel, N., Ouellet, M., Ouellette, M., & Tremblay, M. J. (2010). Nelfinavir, an HIV-1 protease inhibitor, induces oxidative stress-mediated, caspase-independent apoptosis in Leishmania amastigotes. PLoS Negl Trop Dis, 4(3), e642. doi:10.1371/journal.pntd.0000642
    Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., & Korsmeyer, S. J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2(3), 183-192. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12242151
    Leung, E., Kim, J. E., Rewcastle, G. W., Finlay, G. J., & Baguley, B. C. (2011). Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biol Ther, 11(11), 938-946. doi:10.4161/cbt.11.11.15527
    Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., & Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91(4), 479-489. doi:10.1016/s0092-8674(00)80434-1
    Linton, K. J., & Higgins, C. F. (2007). Structure and function of ABC transporters: the ATP switch provides flexible control. Pflügers Archiv - European Journal of Physiology, 453(5), 555-567. doi:10.1007/s00424-006-0126-x
    Louis, J. M., Ishima, R., Torchia, D. A., & Weber, I. T. (2007). HIV-1 protease: structure, dynamics, and inhibition. Adv Pharmacol, 55, 261-298. doi:10.1016/S1054-3589(07)55008-8
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193(1), 265-275. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14907713
    Malumbres, M., & Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 9(3), 153-166. doi:10.1038/nrc2602
    Marchetti, P., Castedo, M., Susin, S. A., Zamzami, N., Hirsch, T., Macho, A., . . . Kroemer, G. (1996). Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med, 184(3), 1155-1160. doi:10.1084/jem.184.3.1155
    Mitchison, T. J., & Salmon, E. D. (2001). Mitosis: a history of division. Nat Cell Biol, 3(1), E17-21. doi:10.1038/35050656
    Moloney, J. N., & Cotter, T. G. (2018). ROS signalling in the biology of cancer. Semin Cell Dev Biol, 80, 50-64. doi:10.1016/j.semcdb.2017.05.023
    Moriwaki, K., & Chan, F. K. (2013). RIP3: a molecular switch for necrosis and inflammation. Genes Dev, 27(15), 1640-1649. doi:10.1101/gad.223321.113
    Nailwal, H., & Chan, F. K. (2019). Necroptosis in anti-viral inflammation. Cell Death Differ, 26(1), 4-13. doi:10.1038/s41418-018-0172-x
    Najafov, A., Chen, H., & Yuan, J. (2017). Necroptosis and Cancer. Trends Cancer, 3(4), 294-301. doi:10.1016/j.trecan.2017.03.002
    Natarajan, U., Venkatesan, T., Radhakrishnan, V., Samuel, S., & Rathinavelu, A. (2018). Differential Mechanisms of Cell Death Induced by HDAC Inhibitor SAHA and MDM2 Inhibitor RG7388 in MCF-7 Cells. Cells, 8(1). doi:10.3390/cells8010008
    Nathan, C., & Cunningham-Bussel, A. (2013). Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol, 13(5), 349-361. doi:10.1038/nri3423
    Niwa, K., Inanami, O., Yamamori, T., Ohta, T., Hamasu, T., & Kuwabara, M. (2003). Redox regulation of PI3K/Akt and p53 in bovine aortic endothelial cells exposed to hydrogen peroxide. Antioxid Redox Signal, 5(6), 713-722. doi:10.1089/152308603770380016
    Norbury, C. J., & Zhivotovsky, B. (2004). DNA damage-induced apoptosis. Oncogene, 23(16), 2797-2808. doi:10.1038/sj.onc.1207532
    Nugues, A. L., El Bouazzati, H., Hetuin, D., Berthon, C., Loyens, A., Bertrand, E., . . . Quesnel, B. (2014). RIP3 is downregulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death Dis, 5, e1384. doi:10.1038/cddis.2014.347
    O'Farrell, T. J., Ghosh, P., Dobashi, N., Sasaki, C. Y., & Longo, D. L. (2004). Comparison of the effect of mutant and wild-type p53 on global gene expression. Cancer Res, 64(22), 8199-8207. doi:10.1158/0008-5472.CAN-03-3639
    Olivier, M., Eeles, R., Hollstein, M., Khan, M. A., Harris, C. C., & Hainaut, P. (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat, 19(6), 607-614. doi:10.1002/humu.10081
    Otera, H., Ohsakaya, S., Nagaura, Z., Ishihara, N., & Mihara, K. (2005). Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J, 24(7), 1375-1386. doi:10.1038/sj.emboj.7600614
    Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif, 45(6), 487-498. doi:10.1111/j.1365-2184.2012.00845.x
    Pan, T., Wu, S., He, X., Luo, H., Zhang, Y., Fan, M., . . . Zhang, H. (2014). Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1)-infected CD4+ T lymphocytes. PLoS One, 9(4), e93944. doi:10.1371/journal.pone.0093944
    Persidis, A. (1999). Cancer multidrug resistance. Nat Biotechnol, 17(1), 94-95. doi:10.1038/5289
    Petit, F., Arnoult, D., Lelievre, J. D., Moutouh-de Parseval, L., Hance, A. J., Schneider, P., . . . Estaquier, J. (2002). Productive HIV-1 infection of primary CD4+ T cells induces mitochondrial membrane permeabilization leading to a caspase-independent cell death. J Biol Chem, 277(2), 1477-1487. doi:10.1074/jbc.M102671200
    Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D'Orazi, G. (2016). Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 8(4), 603-619. doi:10.18632/aging.100934
    Pohl, A., Devaux, P. F., & Herrmann, A. (2005). Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim Biophys Acta, 1733(1), 29-52. doi:10.1016/j.bbalip.2004.12.007
    Ranjan, A., & Iwakuma, T. (2016). Non-Canonical Cell Death Induced by p53. Int J Mol Sci, 17(12). doi:10.3390/ijms17122068
    Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta, 1863(12), 2977-2992. doi:10.1016/j.bbamcr.2016.09.012
    Reed, J. C. (2000). Mechanisms of apoptosis. Am J Pathol, 157(5), 1415-1430. doi:10.1016/S0002-9440(10)64779-7
    Roy, K., Wu, Y., Meitzler, J. L., Juhasz, A., Liu, H., Jiang, G., . . . Doroshow, J. H. (2015). NADPH oxidases and cancer. Clin Sci (Lond), 128(12), 863-875. doi:10.1042/CS20140542
    Ruan, J., Mei, L., Zhu, Q., Shi, G., & Wang, H. (2015). Mixed lineage kinase domain-like protein is a prognostic biomarker for cervical squamous cell cancer. Int J Clin Exp Pathol, 8(11), 15035-15038. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26823841
    Seth, D., & Rudolph, J. (2006). Redox regulation of MAP kinase phosphatase 3. Biochemistry, 45(28), 8476-8487. doi:10.1021/bi060157p
    Sgadari, C., Barillari, G., Toschi, E., Carlei, D., Bacigalupo, I., Baccarini, S., . . . Ensoli, B. (2002). HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med, 8(3), 225-232. doi:10.1038/nm0302-225
    Storz, P. (2005). Reactive oxygen species in tumor progression. Front Biosci, 10, 1881-1896. doi:10.2741/1667
    Su, Z., Yang, Z., Xie, L., DeWitt, J. P., & Chen, Y. (2016). Cancer therapy in the necroptosis era. Cell Death Differ, 23(5), 748-756. doi:10.1038/cdd.2016.8
    Su, Z., Yang, Z., Xu, Y., Chen, Y., & Yu, Q. (2015). Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer, 14, 48. doi:10.1186/s12943-015-0321-5
    Sun, C., Zhang, H., Ma, X. F., Zhou, X., Gan, L., Liu, Y. Y., & Wang, Z. H. (2013). Isoliquiritigenin enhances radiosensitivity of HepG2 cells via disturbance of redox status. Cell Biochem Biophys, 65(3), 433-444. doi:10.1007/s12013-012-9447-x
    Tafani, M., Sansone, L., Limana, F., Arcangeli, T., De Santis, E., Polese, M., . . . Russo, M. A. (2016). The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression. Oxid Med Cell Longev, 2016, 3907147. doi:10.1155/2016/3907147
    Tait, S. W., & Green, D. R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol, 11(9), 621-632. doi:10.1038/nrm2952
    Tait, S. W., Ichim, G., & Green, D. R. (2014). Die another way--non-apoptotic mechanisms of cell death. J Cell Sci, 127(Pt 10), 2135-2144. doi:10.1242/jcs.093575
    Tong, L., Chuang, C. C., Wu, S., & Zuo, L. (2015). Reactive oxygen species in redox cancer therapy. Cancer Lett, 367(1), 18-25. doi:10.1016/j.canlet.2015.07.008
    Toschi, E., Sgadari, C., Malavasi, L., Bacigalupo, I., Chiozzini, C., Carlei, D., . . . Ensoli, B. (2011). Human immunodeficiency virus protease inhibitors reduce the growth of human tumors via a proteasome-independent block of angiogenesis and matrix metalloproteinases. Int J Cancer, 128(1), 82-93. doi:10.1002/ijc.25550
    Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., . . . Huang, P. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell, 10(3), 241-252. doi:10.1016/j.ccr.2006.08.009
    Tu, H. C., Ren, D., Wang, G. X., Chen, D. Y., Westergard, T. D., Kim, H., . . . Cheng, E. H. (2009). The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc Natl Acad Sci U S A, 106(4), 1093-1098. doi:10.1073/pnas.0808173106
    Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. J Physiol, 552(Pt 2), 335-344. doi:10.1113/jphysiol.2003.049478
    Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., & Kroemer, G. (2010). Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol, 11(10), 700-714. doi:10.1038/nrm2970
    Vella, F. (1994). Molecular biology of the cell (third edition): By B Alberts, D Bray, J Lewis, M Raff, K Roberts and J D Watson. pp 1361. Garland Publishing, New York and London. 1994. Biochemical Education, 22(3), 164-164. doi:10.1016/0307-4412(94)90059-0
    Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L. F., . . . Wang, X. (2014). Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell, 54(1), 133-146. doi:10.1016/j.molcel.2014.03.003
    Wang, T., Jin, Y., Yang, W., Zhang, L., Jin, X., Liu, X., . . . Li, X. (2017). Necroptosis in cancer: An angel or a demon? Tumour Biol, 39(6), 1010428317711539. doi:10.1177/1010428317711539
    Wasielewski, M., Elstrodt, F., Klijn, J. G., Berns, E. M., & Schutte, M. (2006). Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines. Breast Cancer Res Treat, 99(1), 97-101. doi:10.1007/s10549-006-9186-z
    Wittmann, T., Hyman, A., & Desai, A. (2001). The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol, 3(1), E28-34. doi:10.1038/35050669
    Wlodawer, A., & Erickson, J. W. (1993). Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem, 62, 543-585. doi:10.1146/annurev.bi.62.070193.002551
    Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res, 30, 87. doi:10.1186/1756-9966-30-87
    Xiang, T., Du, L., Pham, P., Zhu, B., & Jiang, S. (2015). Nelfinavir, an HIV protease inhibitor, induces apoptosis and cell cycle arrest in human cervical cancer cells via the ROS-dependent mitochondrial pathway. Cancer Lett, 364(1), 79-88. doi:10.1016/j.canlet.2015.04.027
    Yang, H., Nkeze, J., & Zhao, R. Y. (2012). Effects of HIV-1 protease on cellular functions and their potential applications in antiretroviral therapy. Cell Biosci, 2(1), 32. doi:10.1186/2045-3701-2-32

    無法下載圖示 校內:2024-10-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE