簡易檢索 / 詳目顯示

研究生: 陳怡儒
Chen, Yi-Ju
論文名稱: 以S摻雜TiO2光觸媒在可見光下處理二硫二甲烷之研究
Photocatalytic Degradation of Dimethyl Disulfide Under Visible Light with S-doped TiO2 Photocatalysts
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 141
中文關鍵詞: 二硫二甲烷光觸媒可見光光催化S摻雜二氧化鈦光觸媒
外文關鍵詞: dimethyl disulfide (DMDS), Titanium dioxide (TiO2), Visible light photocatalysis, S-doped TiO2 photocatalyst
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二硫二甲烷(dimethyl disulfide, DMDS)是具有臭味的揮發性硫化物,高濃度會刺激呼吸道、眼睛和皮膚,大量暴露可能導致意識喪失。主要來源為化石燃料的燃燒、石化工業廠、高科技廠去光阻製程、污水廠、掩埋場中含硫有機物質厭氧分解、牛皮紙漿業、皮革業、煉油廠。
    本研究旨在以溶膠凝膠法製備TiO2光觸媒,藉由S摻雜來提高TiO2光觸媒在可見光下降解二硫二甲烷之光催化能力,以連續流實驗比較不同S摻雜比例TiO2光觸媒之光催化活性,選出光催化能力最佳之光觸媒再進行操作參數實驗,並藉由各種輔助實驗,如UV-Visible、XRD、BET、XPS、FTIR等精密儀器來分析光觸媒吸光度、晶相變化、粒徑分佈、比表面積、化學鍵結、官能基等物化性質,藉以探討與光催化效果之關連性。
    研究結果顯示,S摻雜TiO2光觸媒表面形成微黃色,並且由各種精密儀器分析結果得到S摻雜TiO2光觸媒粒徑變小,比表面積增加,可見光波段吸收能力大幅提升,表面形成酸性位置。而由二硫二甲烷之光催化實驗結果顯示S摻雜TiO2光觸媒可提升在可見光下降解二硫二甲烷效率;在日光燈光源照射下,在不同S摻雜比例之光觸媒中,以S/Ti = 5 mol%有最佳二硫二甲烷光催化降解速率。從操作參數實驗中可得知S/Ti = 5 mol%光觸媒於反應溫度25 °C,相對濕度60 %,二硫二甲烷濃度25 ppm時有最佳光催化降解二硫二甲烷效率。

    In this study, TiO2 was prepared by sol-gel method and doped with S (S/TiO2). The photocatalytic decomposition rate of dimethyl disulfide (DMDS) under visible light condition was expected to increase via doping. Additionally, the physical and chemical properties of the photocatalysts such as adsorbance spectrum, crystallinity, particle size, surface area, and chemical bonding, measured by UV-Visible, XRD, BET and XPS, respectively, were obtained for a better understanding to the reaction of dimethyl disulfide decomposition rate.
    The UV-Visible spectra analysis indicates that the absorption in the visible region of S/TiO2 increased. By doping with S, the particle size obviously decreased and the surface area of S/TiO2 was bigger than pure TiO2.
    The photocatalytic degradation of dimethyl disulfide under fluorescent light was further studied using S/TiO2. The experimental results showed that S/TiO2 = 5 mol% achieved the best performance. We found that under 25 °C, relative humidity 60 %, dimethyl disulfide concentration 25 ppm is the best operation condition.

    摘要 I Abstract II 致謝 III 目錄 A 表目錄 E 圖目錄 F 第一章 前言 1 1-1 研究動機 1 1-2 研究目的 4 第二章 文獻回顧 6 2-1 VOCs的特性及影響 6 2-1.1 VOCs的定義及來源 6 2-1.2 VOCs的主要來源 6 2-2 二硫二甲烷的來源及特性 8 2-2.1 二硫二甲烷的主要來源 8 2-2.2 二硫二甲烷的特性 9 2-3 臭味VOCs的控制技術 13 2-4 光觸媒 18 2.4.1 光觸媒之物理意義 18 2.4.2 能隙(Band gap) 19 2-5 光催化原理 22 2-6 二氧化鈦的基本特性 27 2-7 光觸媒的製備 29 2-7.1 含浸法(Impregnation) 29 2-7.2 溶膠-凝膠法(Sol-gel) 29 2-7.3 物理氣相沉積法(Physical Vapor Deposition) 31 2-7.4 化學氣相沉積法(Chemical Vapor Deposition, CVD) 32 2-7.5 真空濺鍍法(Sputtering) 32 2-7.6 綜合比較 33 2-8 二氧化鈦的表面摻雜 34 2-8.1 添加金屬原子 36 2-8.2 添加金屬離子 37 2-8.3 添加非金屬元素 40 2-8.4 表面敏化 43 2-8.5 加入其它種半導體 44 2-9 二氧化鈦光觸媒塗佈方法 46 2-9.1 浸漬塗佈方法 46 2-9.2 旋轉塗佈法 47 2-10 光觸媒降解VOCs之反應動力 48 2-10.1 柱流式反應器基礎理論 48 2-10.2 積分型反應器 51 2-10.3 觸媒異相反應模式 52 第三章 研究方法與實驗設備 58 3-1 研究方法 58 3-2 實驗材料與設備 60 3-2.1 實驗系統裝置 60 3-2.2 試藥與氣體 66 3-2.3 分析儀器原理與操作條件 68 3-3 實驗方法與步驟 78 3-3.1 光觸媒之製備 78 3-3.2 光觸媒膜之製備 80 3-3.2 檢量線製作 81 3-3.3 二硫二甲烷氣體模擬系統穩定測試 82 3-3.4 光催化之背景實驗 83 第四章 結果與討論 84 4-1 自製TiO2、S/TiO2光觸媒之特性分析 84 4-1.1 熱重分析 84 4-1.2 X-射線繞射分析 88 4-1.3 UV-Visible分析 91 4-2.4 XPS分析 93 4-1.5 FT-IR分析 96 4-1.6 TEM分析 99 4-1.7 光觸媒之SEM分析 103 4-1.8 BET比表面積及孔洞分佈分析 107 4-2 光觸媒降解二硫二甲烷之光催化實驗 109 4-2.1 光觸媒在LED下降解二硫二甲烷之光催化實驗 109 4-2.2 光觸媒在可見光下降解二硫二甲烷之光催化實驗 111 4-2.3 S/Ti = 5 mol%光觸媒降解二硫二甲烷之產物分析 113 4-3 操作條件對光觸媒降解二硫二甲烷效率之探討 114 4-3.1 進流濃度對光觸媒降解二硫二甲烷效率之探討 114 4-3.2 相對溼度對光觸媒降解二硫二甲烷效率之探討 116 4-3.3 反應溫度協同相對濕度對光觸媒降解二硫二甲烷效率之探討 118 4-3.4 操作參數對光觸媒降解二硫二甲烷效率之結論 119 4-4 自製S/TiO2光觸媒之動力分析 120 第五章 結論與建議 126 5-1 結論 126 5-2 建議 129 參考文獻 130 附錄 140

    Alberici, R.M.; Jardim, W.E., 1997. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B-Environmental 14, 55-68.
    Ang, T.P.; Law, J.Y.; Han, Y.F., 2010. Preparation, Characterization of Sulfur-Doped Nanosized TiO2 and Photocatalytic Degradation of Methylene Blue Under Visible Light. Catal. Lett. 139, 77-84.
    Anpo, M.; Shima, T.; Kodama, S.; Kubokawa, Y., 1987. Photocatalytic Hydrogenation of CH3CCH with H2O on Small-Particle TiO2 - Size Quantization Effects and Reaction Intermediates. Journal of Physical Chemistry 91, 4305-4310.
    Bayati, M.R.; Moshfegh, A.Z.; Golestani-Fard, F., 2010. Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping? Mater. Lett. 64, 2215-2218.
    Bleta, R.; Alphonse, P.; Lorenzato, L., 2010. Nanoparticle Route for the Preparation in Aqueous Medium of Mesoporous TiO2 with Controlled Porosity and Crystalline Framework. Journal of Physical Chemistry C 114, 2039-2048.
    Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Lu, P.; Akita, T.; Ichikawa, S.; Haruta, M., 2001. Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation. J Catal 202, 256-267.
    Boulamanti, A.K.; Philippopoulos, C.J., 2009. Photocatalytic degradation of C5-C7 alkanes in the gas-phase. Atmos Environ 43, 3168-3174.
    Briggs, D., 1981. Handbook of X-ray Photoelectron Spectroscopy C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E.Muilenberg Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. Surface and Interface Analysis 3, v-v.
    Brillas, E.; Mur, E.; Sauleda, R.; Sanchez, L.; Peral, J.; Domenech, X.; Casado, J., 1998. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B-Environmental 16, 31-42.
    Carp, O.; Huisman, C.L.; Reller, A., 2004. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33-177.
    Chatterjee, D.; Dasgupta, S.; Rao, N.N., 2006. Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light. Solar Energy Materials and Solar Cells 90, 1013-1020.
    Chen, L.C.; Tu, Y.J.; Wang, Y.S.; Kan, R.S.; Huang, C.M., 2008. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J Photoch Photobio A 199, 170-178.
    Cho, Y.M.; Choi, W.Y.; Lee, C.H.; Hyeon, T.; Lee, H.I., 2001. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology 35, 966-970.
    Choi, W.Y.; Termin, A.; Hoffmann, M.R., 1994. Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles. Angewandte Chemie-International Edition in English 33, 1091-1092.
    Crisan, M.; Braileanu, A.; Raileanu, M.; Zaharescu, M.; Crisan, D.; Dragan, N.; Anastasescu, M.; Ianculescu, A.; Nitoi, I.; Marinescu, V.E.; Hodorogea, S.M., 2008. Sol-gel S-doped TiO2 materials for environmental protection. Journal of Non-Crystalline Solids 354, 705-711.
    de Boer, J.H.; Lippens, B.C.; Linsen, B.G.; Broekhoff, J.C.P.; van den Heuvel, A.; Osinga, T.J., 1966. Thet-curve of multimolecular N2-adsorption. J. Colloid Interface Sci. 21, 405-414.
    Duminica, R.D.; Maury, F.; Hausbrand, R., 2007. N-doped TiO2 coatings grown by atmospheric pressure MOCVD for visible light-induced photocatalytic activity. Surface & Coatings Technology 201, 9349-9353.
    Hamadanian, M.; Reisi-Vanani, A.; Majedi, A., 2009. Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Materials Chemistry and Physics 116, 376-382.
    Hamal, D.B.; Klabunde, K.J., 2007. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J. Colloid Interface Sci. 311, 514-522.
    He, C.; Yu, Y.; Zhou, C.H.; Hu, X.F., 2002. Structure and photocatalytic activities of Ag/TiO2 thin films. J Inorg Mater 17, 1025-1033.
    Ho, W.K.; Yu, J.C.; Lee, S.C., 2006. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry 179, 1171-1176.
    Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W., 1995. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 95, 69-96.
    Hung, C.H.; Marinas, B.J., 1997. Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environmental Science & Technology 31, 1440-1445.
    Jo, W.K.; Kim, J.T., 2010. Decomposition of gas-phase aromatic hydrocarbons by applying an annular-type reactor coated with sulfur-doped photocatalyst under visible-light irradiation. Journal of Chemical Technology and Biotechnology 85, 485-492.
    Jo, W.K.; Shin, M.H., 2010. Visible-light-activated photocatalysis of malodorous dimethyl disulphide using nitrogen-enhanced TiO2. Environmental Technology 31, 575-584.
    Kanai, N.; Nuida, T.; Ueta, K.; Hashimoto, K.; Watanabe, T.; Ohsaki, H., 2004. Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering. Vacuum 74, 723-727.
    Ksibi, M.; Rossignol, S.; Tatibouet, J.M.; Trapalis, C., 2008. Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light. Materials Letters 62, 4204-4206.
    Legrand-Buscema, C.; Malibert, C.; Bach, S., 2002. Elaboration and characterization of thin films of TiO2 prepared by sol-gel process. Thin Solid Films 418, 79-84.
    Li, X.; Xiong, R.C.; Wei, G., 2008. S-N co-doped TiO2 photocatalysts with visible-light activity prepared by sol-gel method. Catal Lett 125, 104-109.
    Liu, G.; Sun, C.H.; Smith, S.C.; Wang, L.Z.; Lu, G.Q.; Cheng, H.M., 2010. Sulfur doped anatase TiO2 single crystals with a high percentage of {001} facets. J. Colloid Interface Sci. 349, 477-483.
    Liu, S.X.; Chen, X.Y., 2008. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazardous Materials 152, 48-55.
    Liu, S.X.; Qu, Z.P.; Han, X.W.; Sun, C.L., 2004. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today 93-95, 877-884.
    Liu, Y.M.; Liu, J.Z.; Lin, Y.L.; Zhang, Y.F.; Wei, Y., 2009. Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation. Ceramics International 35, 3061-3065.
    Lv, K.L.; Zuo, H.S.; Sun, J.; Deng, K.J.; Liu, S.C.; Li, X.F.; Wang, D.Y., 2009. (Bi, C and N) codoped TiO2 nanoparticles. J Hazard Mater 161, 396-401.
    Madarasz, J.; Braileanu, A.; Crisan, M.; Pokol, G., 2009. Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG-FTIR and TG/DTA-MS in air: Part 2. Precursor from thiourea and titanium(IV)-n-butoxide. J Anal Appl Pyrol 85, 549-556.
    Mehranpour, H.; Askari, M.; Ghamsari, M.S.; Farzalibeik, H., 2010. Study on the Phase Transformation Kinetics of Sol-Gel Drived TiO2 Nanoparticles. J. Nanomater.
    Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J.J.; Zhao, R., 2009. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment 43, 2229-2246.
    Nadtochenko, V.; Denisov, N.; Gorenberg, A.; Kozlov, Y.; Chubukov, P.; Rengifo, J.A.; Pulgarin, C.; Kiwi, J., 2009. Correlations for photocatalytic activity and spectral features of the absorption band edge of TiO2 modified by thiourea. Applied Catalysis B: Environmental 91, 460-469.
    Naik, B.; Parida, K.M.; Gopinath, C.S., 2010. Facile Synthesis of N- and S-Incorporated Nanocrystalline TiO2 and Direct Solar-Light-Driven Photocatalytic Activity. The Journal of Physical Chemistry C 114, 19473-19482.
    Nakamura, R.; Tanaka, T.; Nakato, Y., 2004. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes. The Journal of Physical Chemistry B 108, 10617-10620.
    Parida, K.M.; Sahu, N.; Biswal, N.R.; Naik, B.; Pradhan, A.C., 2008. Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light. J. Colloid Interface Sci. 318, 231-237.
    Periyat, P.; Pillai, S.C.; McCormack, D.E.; Colreavy, J.; Hinder, S.J., 2008. Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2. Journal of Physical Chemistry C 112, 7644-7652.
    Prairie, M.R.; Evans, L.R.; Stange, B.M.; Martinez, S.L., 1993. An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environmental Science & Technology 27, 1776-1782.
    Reutergardh, L.B.; Iangphasuk, M., 1997. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and CdS photocatalysis. Chemosphere 35, 585-596.
    Rockafellow, E.M.; Stewart, L.K.; Jenks, W.S., 2009. Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation? Appl. Catal. B-Environ. 91, 554-562.
    Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H., 1995. Exploiting the Interparticle Electron-Transfer Process in the Photocatalyzed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol - Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors. J Photoch Photobio A 85, 247-255.
    Sun, H.; Liu, H.; Ma, J.; Wang, X.; Wang, B.; Han, L., 2008. Preparation and characterization of sulfur-doped TiO2/Ti photoelectrodes and their photoelectrocatalytic performance. J Hazard Mater 156, 552-559.
    Szatmary, L.; Bakardjieva, S.; Subrt, J.; Bezdicka, P.; Jirkovsky, J.; Bastl, Z.; Brezova, V.; Korenko, M., 2011. Sulphur doped nanoparticles of TiO2. Catal. Today 161, 23-28.
    Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K., 2002. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J Phys Chem Solids 63, 1909-1920.
    Vincent, G.; Marquaire, P.M.; Zahraa, O., 2009. Photocatalytic degradation of gaseous 1-propanol using an annular reactor: Kinetic modelling and pathways. J Hazard Mater 161, 1173-1181.
    Wang, E.; Yang, W.; Cao, Y., 2009. Unique Surface Chemical Species on Indium Doped TiO2 and Their Effect on the Visible Light Photocatalytic Activity. The Journal of Physical Chemistry C 113, 20912-20917.
    Wei, F.Y.; Ni, L.S.; Cui, P., 2008. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. Journal of Hazardous Materials 156, 135-140.
    Wu, X.W.; Wu, D.J.; Liu, X.J., 2009. Optical investigation on sulfur-doping effects in titanium dioxide nanoparticles. Applied Physics a-Materials Science & Processing 97, 243-248.
    Xie, H.; Zhang, Q.; Xi, T.; Wang, J.; Liu, Y., 2002. Thermal analysis on nanosized TiO2 prepared by hydrolysis. Thermochimica Acta 381, 45-48.
    Yates, J.R.; Eng, J.; Mccormack, A.L.; Moji, T.; Pious, D., 1995. Studies of Immunological Pathways by Using Tandem Mass-Spectrometry and Database Searching. Abstracts of Papers of the American Chemical Society 209, 122-ANYL.
    Yin, S.; Yamaki, H.; Komatsu, M.; Zhang, Q.W.; Wang, J.S.; Tang, Q.; Saito, F.; Sato, T., 2003. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. Journal of Materials Chemistry 13, 2996-3001.
    Yu, C.; Cai, D.; Yang, K.; Yu, J.C.; Zhou, Y.; Fan, C., 2010. Sol-gel derived S,I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. Journal of Physics and Chemistry of Solids 71, 1337-1343.
    Yu, J.C.; Ho, W.K.; Yu, J.G.; Yip, H.; Wong, P.K.; Zhao, J.C., 2005. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environmental Science & Technology 39, 1175-1179.
    Zaleska, A.; Górska, P.; Sobczak, J.W.; Hupka, J., 2007. Thioacetamide and thiourea impact on visible light activity of TiO2. Applied Catalysis B: Environmental 76, 1-8.
    Zhang, Y.; Shen, Y.; Gu, F.; Wu, M.M.; Xie, Y.; Zhang, J.C., 2009. Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Applied Surface Science 256, 85-89.
    Zhou, M.H.; Yu, J.G., 2008. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders. J Hazard Mater 152, 1229-1236.
    Znad, H.; Kawase, Y., 2009. Synthesis and characterization of S-doped Degussa P25 with application in decolorization of Orange II dye as a model substrate. Journal of Molecular Catalysis a-Chemical 314, 55-62.
    林有銘,「無所不在的環境清潔工─奈米光觸媒」,科學發展,第四○八期,24-31,2006。
    邱創汎,王耀銘,張坦卿,1996,空氣污染生物處理技術本土化之評析,工業污染防治,58,111-124。
    張豐堂、粘愷峻、王秉才、謝紹祖、林美玲,「排氣VOC控制案例」,環境工程會刊,第二十卷,第二期,2009。
    陳慧英、黃定加、朱秦億,「溶膠凝膠法在薄膜製備上的應用」,化工技術,第七卷,第十一期,1999,152-167。
    黃振家,「揮發性有機廢氣處理技術:活性碳吸附」,化工技術,第四十四卷,第三期,1997,49-59。
    環保署環境統計資料庫http://210.69.101.110/WEBSTATIS/webindex.htm
    環境保護署,「有害空氣污染物排放管制規範研訂計畫」,EPA-82-F103-09-13,1994。
    垰田博史,「光觸媒圖解」,商周出版社,2003。

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE