| 研究生: |
徐懋騰 Hsu, Mao-Teng |
|---|---|
| 論文名稱: |
矽光子元件在光訊號開關與光調變領域之研究 Optical Switch and Optical Modulation in Silicon Photonics Devices |
| 指導教授: |
莊文魁
Chuang, Ricky-Wenkuei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 194 |
| 中文關鍵詞: | 矽光調變器 、SION光波導開關 、矽光子 、絕緣層上矽基板 、磊晶矽基板 、PIN二極體 、DIFET電晶體 、DDT電晶體 、JFET電晶體 |
| 外文關鍵詞: | silicon waveguide modulator, silicon oxynitride waveguide switch, silicon photonics, silicon-on-insulator wafer, silicon-on-silicon wafer, PIN diode, double injection field effect transistor, double diode transistor, junction field effect transistor |
| 相關次數: | 點閱:119 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究的主要目的是為了設計並製作出高速、高調變深度、低功率消耗的光波導調變器和光波導開關元件。在我們光波導調變器的研究當中,我們從一開始結構較為簡單的元件開始,陸續做各種不同的結構改變和嘗試,期望可以朝我們研究的目標更靠近,所以我們總共設計了五個不同的矽光波導調變器結構,在我們的第一個元件中,我們成功地利用折射率調變的方式在SOI基板製作出一個p+–p ––n + (p–i–n) 二極體結構的光波導調變器。其中調變深度會被光波導的寬度、p+和n+掺雜濃度、驅動電流大小所控制。而我們利用SOD的技術製作p+和n+的掺雜區域取代傳統利用離子佈植技術所製作的元件,最大調變深度在元件長度為7mm並且順偏電流為5mA/mm的條件下可以達到~4.15%。
在第二個元件中我們製作出一個三端電晶體結構的直線型光波導調變器,我們詳細地比較研究了光波導元件尺寸和所施加的固定偏壓對光調變深度的影響。根據我們的量測結果顯示,當元件的光波導寬度增加和元件調變區長度增加的情況對於調變深度的改善有正面的幫助。另一方面藉由外加額外的Vgs偏壓也可以幫助降低元件ON/OFF切換的上升和下降時間。另外增加溝渠結構在靠近屋脊式光波導結構的兩側的設計會導致載子傳輸的距離增加,反而會讓元件操作的速度降低。
在第三個元件中,我們設計並製作分析一個利用兩個多模干涉儀組成面積只有6000 × 40 μm2的Mach-Zenhder干涉儀光波導調變器, 元件的調變機制是利用自由載子注入效應,並且此結構利用BPM模擬的消光率約18.3dB,在元件的量測過程中達到第一次π相位差的電功率消耗約0.2W,另外在光響應速度的量測結果中,MMI-MZIs在三個調變長度460, 960, 1960μm的上升 / 下降時間分別為56/84, 52/84 and 76/88 ns,最後此元件的3dB頻率響應量測結果為大於6MHz。
在第四個元件中,我們設計和製作一種新式的三端電晶體結構的MachZehnder 干涉儀光調變器在SOS基板。我們提出此一新式電晶體結構的等效電路以便更容易了解其動作原理和元件特性。雖然此元件的消光率可達到25dB,但我們的實驗結果同時也顯示此結構的元件需要消耗約0.75W的電功率才能達到一次 π相位移變化,並且響應特性量測結果顯示, 此元件的上升和下降時間分別為8.5μs 和7.5μs。此元件三個不同調變長度的3dB頻率響應都約為400kHz。並且我們經由實驗驗證此元件的響應特性主要被響應速度較低的熱光效應所主導。
在第五個元件中,我們使用double injection field effect transistor (DIFET) 架構的電晶體和Mach-Zenhder干涉儀整合,並將其製作、量測與分析特性。根據所量測到的結果顯示此元件的消光率為17dB,在元件的量測過程中達到第一次π相位差的電功率消耗約0.2W。而光響應速度的量測結果顯示,三種不同調變長度元件500μm, 1000μm和2000μm的上升和下降時間分別為44/60 ns、48/64 ns和50/54 ns。而此結構的元件在三端電晶體的操作模式中所量到的3dB頻率響應約為10.5 MHz。
在光波導開關的研究當中,我們成功的設計和製作出一個利用串接式多模干涉儀所組合成的2 × 2 SiO2 /SiON/SiO2 光波導開關元件,並且利用SiON薄膜的熱光效應做為此元件的調變機制,並且此元件的FD-BPM模擬結果和實際的量測結果相似,兩者之間只有一微小的差異在於實際SION薄膜的熱光係數和模擬當中所使用的參數不見的相同,並且在模擬過程中所使用的SION薄膜的熱光係數是假設為一個固定的常數。 我們的量測結果顯示此元件的光訊號切換特性達到最大時所需消耗的電功率約為0.89W,並且最大的訊號切換對比為12dB。而頻率響應的量測結果當中,元件的上升和下降時間都約為314μs。
The main purpose of our research is that we want to fabricate the high operating speed, high modulation depth and low operating power consumption silicon optical waveguide modulator and optical switch. In the field of our silicon optical waveguide modulators, we start this research from a simply structure device, and then we try to change the device structure in order to improve the device characteristic in following devices. We had designed and fabricated five different silicon optical waveguide modulator structures. In our first device structure, we have successfully demonstrated silicon p+–p––n+ (p–i–n) waveguide modulators fabricated on SOI substrates utilizing the index modulation technique. The efficiency of the modulator depends critically on the core width, available dopant concentrations of both p+ and n+ doped regions, and driving current. By using the spin-on-dopant technique, both p- and n- regions can be conveniently defined without the need of relying on cumbersome implantation procedure. The highest modulation depth achieved was ~4.15% for a 7-mm-long device operating at a forward bias current density of 5 mA/mm.
In our second device structure, we have successfully demonstrated a working silicon three-terminal transistor-based waveguide modulator; most of all, the dependencies of the modulation depth on the relative device dimensions and applied biasing signals of different frequencies were studied in full detail. Based on our results, the enhancements in the modulation depth of the devices were clearly observed as their rib waveguide widths or modulation lengths became respectively wider or longer. Furthermore, incorporating a third terminal with different applied VGS’s did help to reduce the rise and fall times of the modulators. Finally, adding trenches close to the edges of the rib inevitably impeded the carriers flow, thereby limiting the efficiency of carrier depletion or accumulation during the actual device operation.
In our third device structure, the design of MMI-MZI modulators with dimensions of 6000 × 40 μm was proposed, fabricated and analyzed. The operation of these devices was based on the carrier injection effect, from which an approximate extinction ratio of 28.3 dB was obtained using BPM simulation. As for the device measurements, when the driving power was set at 0.2 W, the first π phase shift was observed. Finally, the optical response measurements indicated that the rise/fall times determined for MMI-MZIs with the three different MLs of 460, 960 and 1960 μm were 56/84, 52/84 and 76/88 ns, respectively. Finally, the 3-dB roll-off frequency ( f3dB ) of greater than 6 MHz was also determined via the frequency response measurement.
In our fourth device structure, A new three-termina1 transistor is proposed as a modulation structure for MachZehnder interferometric optical modulators fabricated on SOS (silicon-on-silicon) substrates. The concept of the equivalent circuits was used to better understand the performance of these threeterminal devices. Our experimental results showed that an approximately 0.75 W (or 50mA IS current) of Switching power is needed to initiate the first π phase shift and With this input power applied, an excess of 25 dB extinction ratio is achieved. Furthermore, the optical response measurements obtained earlier also indicated that the rise and fall times measured from these device are in the neighborhood of 8.5 and 7.5μs, respectively. Finally, the 3dB roll-off frequency (f3dB) was also measured with values in the excess of 400kHz for the modulators with the phase Shifters of three different lengths. The insensitivities of the devices temporal and frequency responses toward the phase shifter length are in fact predominantly attributed to the slow thermo-optic effects.
In our fifth device structure, the design of the double injection field effect transistor (DIFET) based MZI modulators with three different phase shifter lengths was proposed, fabricated, and analyzed. According to the experimental results obtained, the highest extinction ratio achieved was in the excess of 17 dB. Furthermore, the optical response measurements indicated that the rise/fall times determined for MZIs with the three different modulation lengths of 500, 1000 and 2000 μm were 44/60 ns, 48/64 ns, and 50/54 ns, respectively. Finally, the 3dB roll-off frequency (f3dB) of more than 10.5 MHz was also determined via the frequency response measurement.
We have successfully designed and fabricated a cascaded MMI-based 2 × 2 SiO2 /SiON/SiO2 optical waveguide switch utilizing the thermo-optic effect. Our FD-BPM simulation and subsequent device characterization results matched rather well with one another. The minor discrepancy between the simulation and experimentation data appeared to be due to a slightly changing thermo-optic coefficient of SiON film during the actual device operation, whereas a constant TO coefficient of SiON was assumed instead in carrying out the simulation. Our experimental results have demonstrated that a minimal heating power of ~0.89 W is required to start the optical switching with the highest extinction coefficient of higher than 12 dB. Finally, the dynamic response measurement conducted on our devices clearly indicates the rise and fall times thereby obtained are around 314 μs.
Chapter 1
[1] J. M. Kahn and K. P. Ho, “A bottleneck for optical fibres,” Nature vol.411, pp. 1007- 1010, 2001.
[2] T. R. Chen, W. Hsin, and N. Bar-Chaim, “Very high power InGaAsP/InP distributed feedback lasers at 1550 nm wavelength,” Appl. Phys. Lett. vol. 72, pp. 1269- 1271, 1998.
[3] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, Peter F. Hallemeier, David Maack, Daniel V. Attanasio, Daniel J. Fritz, Gregory J. McBrien, and Donald E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. vol. 6, pp. 69-82, 2000.
[4] B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, Michal Lipson, and Keren Bergman, “High-Speed 2 2 Switch for Multiwavelength Silicon-Photonic Networks–On-Chip,” J. Lightwave Technol. vol. 27, pp.2900-2907, 2009.
[5] M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Yuki Taniguchi, and Takeshi Yagi, “Low-Loss and Low-Dispersion-Slope Highly Nonlinear Fibers,” J. Lightwave Technol. vol. 23, pp. 3615-3624, 2005.
[6] M. A. Mahdi, S. J. Sheih, “Gain-flattened extended L-band EDFA with 43 nm bandwidth suitable for high signal powers,” Opt. Commun. vol. 234, pp. 229–233, 2004.
[7] P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express vol. 15, pp. 2299- 2306, 2007.
[8] L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express vol. 17, pp. 15248- 15256, 2009.
[9] D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM Transmission over 3×55-km SSMF using Pilot-based Phase Noise Mitigation,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference , Los Angeles, 2011, pp. 1-3, 2011.
[10] M. Minakata, “Recent Progress of 40 GHz high-speed LiNbO3 optical modulator.” Proc. SPIE vol. 4532, pp. 16-27, 2001.
[11] R. A. Soref, “Silicon-Based Optoelectronics,” Proc. IEEE, vol. 81, pp. 1687- 1706, 1993.
[12] M. Asghari and A. V. Krishnamoorthy, “Energy-Efficient Communication,” Nat. Photonics vol. 5, pp. 268-270, 2011.
[13] R. A. Soref, and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. vol. 23, pp. 123-129, 1987.
[14] G. T. Reed and A. P. Knights, “Silicon Photonics An Introduction,” John Wiley & Sons, New York, 2004.
[15] M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express vol. 15, pp. 7557- 7563, 2007.
[16] G. T. Reed, G. Mashanovich, F. Y. Gardes and D. J. Thomson, “silicon optical modulators,” Nat. Photonics vol. 4, pp. 518-526, 2010.
[17] X. Chen, C. Li and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. vol. 3, pp. 34-40, 2011.
[18] H. C. Huang, S. Yee, R. B. Darling, and C. H. Chan, “A silicon diverging beam modulator fabricated by part of metal-oxide-silicon process modules,” J. Appl. Phys. vol. 72, pp. 791-793, 1992.
[19] A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, Fabrication, and Testing of an Integrated Si-Based Light Modulator,” J. Lightwave Technol. vol. 21, pp. 228-235, 2003.
[20] T. Hirata, K. Kajikawa, T. Tabei, and H. Sunami, “Proposal of a Metal–Oxide–Semiconductor Silicon Optical Modulator Based on Inversion-Carrier Absorption,” Jpn. J. Appl. Phys. vol. 47, pp. 2906–2909, 2008.
[21] K. Kajikawa, T. Tabei, and H. Sunami, “An Infrared Silicon Optical Modulator of Metal–Oxide–Semiconductor Capacitor Based on Accumulation-Carrier Absorption,” Jpn. J. Appl. Phys. vol. 48, pp. 04C107, 2009.
[22] M. Liu, X. Yin, E. U. Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature vol. 474, pp. 64-67, 2011.
[23] S. A. Clark, B. Cuishaw, E. J. C. Dawnay and I. E. Day, “Thermo-Optic Phase Modulators in SIMOX Material,” Proc. SPIE. vol. 3936, pp. 16-24, 2000.
[24] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature vol. 427, pp. 615-618, 2004.
[25] A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express vol. 15, pp. 660- 668, 2007.
[26] W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express vol. 15, pp. 17106-17113, 2007.
[27] Kensuke Ogawa, Kazuhiro Goi, Yong Tsong Tan, Tsung-Yang Liow, Xiaoguang Tu, Qing Fang, Guo-Qiang Lo, and Dim-Lee Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps,” Opt. Express vol. 19, pp. B26- B31, 2011.
[28] N. N. Feng, S. Liao, D. Feng, P. Dong, Dawei Zheng, Hong Liang, Roshanak Shafiiha, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25µm silicon-on-insulator waveguides,” Opt. Express vol. 18, pp. 7994- 7999, 2010.
[29] X. Tu, T. Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G. Q. Lo, “50-Gbps silicon optical modulator with traveling-wave electrodes,” Opt. Express vol. 21, pp. 12776- 12782, 2013.
[30] M. Y. Liu and S. Y. Chou, “High-modulation-depth and short-cavity-length silicon Fabry–Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett. vol. 68, pp. 170-172, 1996.
[31] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature vol. 435, pp. 325- 327, 2005.
[32] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express vol. 15, pp. 430- 436, 2007.
[33] C. Li, L. Zhou and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express vol. 15, pp. 5069- 5076, 2007.
[34] J. Leuthold and C. H. Joyner, “Multimode Interference Couplers with Tunable Power Splitting Ratios,” J. Lightwave Technol. vol. 19, pp. 700-707, 2001.
[35] J. V. Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express vol. 17, pp. 24020- 24029, 2009.
[36] Y. Vlasov, W. M. J. Green and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics vol. 2, pp. 242-246, 2008.
[37] M. Y., William M. J. Green, S. A., Joris V. Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash and Y. A. Vlasov, “Non-Blocking 4x4 Electro-Optic Silicon Switch for On-Chip Photonic Networks,” Opt. Express vol. 19, pp. 47- 54, 2011.
[38] N. S. Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, “Optical 4x4 hitless silicon router for optical Networks-on-Chip (NoC),” Opt. Express vol. 16, pp. 15915- 15922, 2008.
Chapter 2
[1] A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-Loss Planar Optical Waveguides Fabricated in SIMOX Material,” IEEE Photonics Technol. Lett. vol.4, pp.633-635, 1992.
[2] J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. vol. 7, pp. 101-140, 2001.
[3] R. A. Soref, “Silicon-Based Optoelectronics,” Proc. IEEE. vol. 81, pp. 1687-1706, 1993.
[4] C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. vol. 31, pp. 451-452, 1995.
[5] S. A. Clarke, B. Culshaw, E. J. C. Dawney, and I. E. Day, “Thermo-Optic Phase Modulators in SIMOX Material,” Proc. SPIE. vol. 3936, pp. 16-24, 2000.
[6] R. A. Soref and B. R. Bennett, “Electrooptica l Effects in Silicon,” IEEE J. Quantum Electron. vol. 23, pp. 123-129, 1987.
[7] G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. vol. 59, pp. 771-773, 1991.
[8] R. A. Soref and B. R. Bennett, “Kramers-Kronig Analysis of Electro-Optical Switching in Silicon,” SPIE Integrated Opt. Circuit Eng. vol. 704, pp.32-303, 1986.
[9] G. Cocorullo and I. Rendina, “Thermo-Optical Modulation at 1.5μm in silicon etalon,” Electron. Lett. vol. 28, pp. 83 – 85, 1992.
Chapter 3
[1] D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM Transmission over 3×55-km SSMF using Pilot-based Phase Noise Mitigation,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference , Los Angeles, 2011, pp. 1-3, 2011.
[2] G. T. Reed, “The optical age of silicon,” Nature vol. 427, pp. 595-596, 2004.
[3] International Technology Roadmap for Semiconductors (ITRS), Edition, Interconnect topic, 2006.
[4] R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. vol. 23, pp. 123-129, 1987.
[5] C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SO1 waveguides,” Electron. Lett. vol. 31, pp. 451-452, 1995.
[6] R. W. Chuang and M. T. Hsu, “Silicon Optical Modulators in Silicon-on-Insulator Substrate Based on the p–i–n Waveguide Structure,” Jpn. J. Appl. Phys. Vol. 46 pp. 2445-2449, 2007.
[7] R. D. Lareau, L. Friedman and R. A. Soref, “Waveguided Electro-Optical Intensity Modulation in A Si/GexSi1-x/Si Heterojunction Bipolar Transistor,” Electron. Lett. vol. 26, pp. 1653-1655, 1990.
[8] A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, Fabrication, and Testing of an Integrated Si-Based Light Modulator,” J. Lightwave Technol. vol. 21, pp. 228-235, 2003.
[9] A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 μm,” Appl. Phys. Lett. vol. 86, pp. 201115, 2005.
[10] R. W. Chuang, Z. L. Liao, M. T. Hsu, J. C. Liao and C. C. Cheng, “Silicon Electro-Optic Modulator Fabricated on Silicon Substrate Utilizing the Three-Terminal Transistor Waveguide Structure,” Jpn. J. Appl. Phys. vol. 47, pp. 2945-2949, 2008.
[11] R. A. Soref, J. Schmidtchen and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SO2,” IEEE J. Quantum Electron. vol. 27, pp. 1971-1974, 1991.
[12] S. Pogossian, L. Vescan and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” J. Lightwave Technol. vol. 16, pp. 1851-1853, 1998.
Chapter 4
[1] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE vol. 81, pp. 1687–1706, 1993.
[2] R. A. Soref, “Silicon photonics technology: past, present, and future,” Proc. SPIE. vol. 5730, pp. 19–28, 2005.
[3] P. Koonath, T. Indukuri and B. Jalali, “Monolithic 3-D silicon photonics,” J. Lightwave Technol. vol. 24, pp. 1796–1804, 2006.
[4] T. Indukuri, P. Koonath and B. Jalali, “Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon,” Appl. Phys. Lett. vol. 88, pp. 121108-1–121108-3, 2006.
[5] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. vol. 13, pp. 615–627, 1995.
[6] D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov and S. Forrest, “Fabrication of ultracompact 3 dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. vol. 11, pp. 1009–1011, 1999.
[7] D. J. Thomson, Y. Hu, G. T. Reed, J. M. Fedeli, ”Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. vol. 22, pp. 1485–1487, 2010.
[8] Y. Zhang, L. Liu, X. Wu, L. Xu, “Splitting-on-demand optical power splitters using multimode interference (MMI) waveguide with programmed modulations,” Opt. Commun. vol. 281, pp. 426–432, 2008.
[9] X. Wang, J. Liu, Q. Yan, S. Chen, J. Yu, “SOI thermo-optic modulator with fast response,” Chin. Opt. Lett. vol. 1, pp. 527–528, 2003.
[10] A. A. House, R. R. Whiteman, L. Kling, et al. “Silicon waveguide integrated optical switching with microsecond switching speed,” Proc. Opt. Fiber Commun. (OFC), vol. 2, pp. 449–450, 2003.
[11] O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. vol. 63, pp. 416–419, 1973.
[12] R. Ulrich, G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. vol. 27, pp. 337–339, 1975.
[13] P. Dainesi, L. Thevenaz, Ph. Robert, “Intensity modulation in two Mach–Zehnder interferometers using plasma dispersion in silicon-on-insulator,” Appl. Phys. B, vol. 73, pp. 475–478, 2001.
[14] F. Sun, J. Yu, S. Chen, “Directional-coupler-based Mach–Zehnder interferometer in silicon-on-insulator technology for optical intensity modulation,” Opt. Eng. vol. 46, pp. 025601-1–025601-5, 2007.
[15] F. Sun, J. Yu, S. Chen, “A 2 × 2 optical switch based on plasma dispersion effect in silicon-on-insulator,” Opt. Commun. vol. 262, pp. 164–169, 2006.
[16] R.W. Chuang, M. T. Hsu, S. H. Chou, Y. J. Lee, “Silicon Mach–Zehnder waveguide interferometer on silicon-on-silicon (SOS) substrate incorporating the integrated three-terminal field-effect device as an optical signal modulation structure”, IEICE Trans. Electron.vol. E94-C, pp. 1173–1178, 2011.
Chapter 5
[1] M. Minakata, “Recent Progress of 40 GHz high-speed LiNbO3 optical modulator,” Proc. SPIE. vol. 4532, pp. 16-27, 2001.
[2] G. Cocorullo, F. G. D. Corte, M. I. I. Rendina and P. M. Sarro, “Silicon-on-Silicon Rib Waveguide with a High-Confining Ion-Implanted Lower Cladding,” IEEE J. Sel. Top. Quantum Electron. vol. 4, pp. 983–989, 1998.
[3] A. Sciuto, S. Libertino, A. Alessandria, S. Coffa and G. Coppola, “Design, Fabrication, and Testing of an Integrated Si-Based Light Modulator,” J. Lightwave Technol. vol. 21, pp.228-235, 2003.
[4] R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. vol. 23, pp.123-129, 1987.
[5] C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett. vol. 67, pp. 2448-2449, 1995.
[6] S. A. Clark, B. Cuishaw, E. J. C. Dawnay and I. E. Day, “Thermo-Optic Phase Modulators in SIMOX Material,” Proc. SPIE. vol. 3936, pp. 16-24, 2000.
[7] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature vol. 435, pp. 325-327, 2005.
[8] M. Xin, A. J. Danner, C. E. Png and S. T. Lim, “Theoretical study of a cross-waveguide resonator-based silicon electro-optic modulator with low power consumption,” J. Opt. Soc. Am. B vol. 26, pp. 2176-2180, 2009.
[9] R. A. Soref and J. P. Lorenzo, “All-Silicon Active and Passive Guided-Wave Components for λ = 1.3 and 1.6 μm”, IEEE J. Quantum Electron. vol. 22, pp. 873-879, 1986.
Chapter 6
[1] G. T. Reed, G. Mashanovich, F. Y. Gardes and D. J. Thomson, “silicon optical modulators,” Nat. Photonics vol. 4, pp. 518-526, 2010.
[2] N. S. Droz, H. Wang, L. Chen and B. G. Lee, Aleksandr Biberman, Keren Bergman, and Michal Lipson, “Optical 4×4 hitless silicon router for optical Networks-on-Chip (NoC).” Opt. Express vol. 16, pp. 15915-15922, 2008.
[3] R. A. Soref and P. J. Lorenzo, “All-Silicon Active and Passive Guided-Wave Components for λ = 1.3 and 1.6 μm,” IEEE J. Quantum Electron. vol. 22, pp. 873-879, 1986.
[4] R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron vol. 23, pp. 123-129, 1987.
[5] C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. vol. 31, pp. 451-452, 1995.
[6] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature vol. 427, pp. 615-618, 2004.
[7] L. Liao, D. S. Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express vol. 13, pp. 3129-3135, 2005.
[8] L. Friedman, R. A. Soref and J. P. Lorenzo, “Silicon double injection electrooptic modulator with junction gate control,” J. Appl. Phys. vol. 63, pp. 1831- 1839, 1988.
[9] F. Y. Gardes, G. T. Reed, N. G. Emerson, C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express vol. 13, pp. 8845-8853, 2006.
Chapter 7
[1] L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging : Principles and Applications,” J. Lightwave Technol. vol. 13, pp. 615-627, 1995.
[2] S. Nagai, G. Morishima, M. Yagi and K. Utaka, “InGaAs/InP Multi-Mode Interference Photonic Switches for Monolithic Photonic Integrated Circuits,” Jpn. J. Appl. Phys. vol. 38, pp. 1269-1272, 1999.
[3] X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu and S. Ishikawa, “Compact Variable Optical Attenuator Based on Multimode Interference Coupler,” IEEE Photonics Technol. Lett. vol. 17, pp. 2361-2363, 2005.
[4] J. Leuthold and C. H. Joyner, “Multimode Interference Couplers with Tunable Power Splitting Ratios,” J. Lightwave Technol. vol. 19, pp. 700-707, 2001.
[5] R. W. Chuang, Z. L. Liao, and C. K. Chang, “Integrated Optical Beam Splitters Employing Symmetric Mode Mixing in SiO2/SiON/SiO2 Multimode Interference Waveguides,” Jpn. J. Appl. Phys. vol. 46, pp. 2440-2444, 2007.
[6] Q. Lai, W. Hunziker and H. Melchior, “Low-Power Compact 2×2 Thermooptic Silica-on-Silicon Waveguide Switch with Fast Response,” IEEE Photonics Technol. Lett. vol. 10, pp. 681-683, 1998.
[7] R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,” IEEE Photonics Technol. Lett. vol. 15, pp. 1366-1368, 2003.
[8] Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode Interference couplers,” Electron. Lett. vol. 38, pp. 1701-1702, 2002.
[9] R. V. Roijen, E. C. M. Pennings, M. J. N. Van Stalen, T. V. Dongen, B. H. Verbeek, and J. M. M. V. D. Heijden, “Compact InP based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. vol. 64, pp. 1753-1755, 1994.
[10] M. L. Masˇanovic´, E. J. Skogen, J. S. Barton, J. M. Sullivan, D. J. Blumenthal, and L. A. Coldren, “Multimode Interference-Based Two-Stage 1×2 Light Splitter for Compact Photonic Integrated Circuits,” IEEE Photonics Technol. Lett. vol. 15, pp. 706-708, 2003.
Chapter 8
[1] Vilson R. Almeida, Roberto R. Panepucci, and Michal Lipson, “Nanotaper for compact mode conversion,” Opt. Lett., vol. 28, pp. 1302-1304, 2003.
[2] Zhe Xiao, Tsung-Yang Liow, Jing Zhang, Ping Shum, and Feng Luan, “Bandwidth analysis of waveguide grating coupler,” Opt. Express, vol. 21, pp. 5688-5700, 2013.
[3] Q. Z. Hong, W. T. Shiau, H. Yang, J. A. Kittl, C . P. Chao, H. L. Tsai, S . Krishnan, I. C. Chen, and R. H. Havemann, “CoSi2 With Low Diode Leakage and Low Sheet Resistance at 0.065pm Gate Length,” IEDM, pp. 107-110, 1997.
[4] X. Tu, T. Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G. Q. Lo, “50-Gbps silicon optical modulator with traveling-wave electrodes,” Opt. Express vol. 21, pp. 12776- 12782, 2013.
[5] H. Yu and W. Bogaerts, “An Equivalent Circuit Model of the Traveling Wave Electrode for Carrier-Depletion-Based Silicon Optical Modulators,” J. Lightwave Technol. vol. 30, pp. 1602-1609. 2012.
[6] W. H. Chang, “Analytical IC Metal-Line Capacitance Formulas,” IEEE Trans. Microw. Theory Tech., vol. 24, pp. 608–611, 1976.
[7] G. Ghione, Semiconductor Devices for High-Speed Optoelectronics. New York: Cambridge Univ. Press, 2009, ch. 6.