簡易檢索 / 詳目顯示

研究生: 吳松樺
Wu, Sung-Hua
論文名稱: 弦波式多鋸齒於鋸削製程之切削特性研究
Study on Cutting Characteristics of Sinusoidal Multi-Cutters in Hack-Sawing Process
指導教授: 李榮顯
Lee, Rong-Shean
共同指導教授: 王俊志
Wang, J-J Junz
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 95
中文關鍵詞: 鋸切過程切齒偶合弦波式多刃齒切屑殘形幾何切削特性刀具拓璞
外文關鍵詞: hack-sawing process, cutter-by-cutter coupling, sinusoidal multi-cutters, chip fractal geometry, cutting characteristics, cutter topology
相關次數: 點閱:156下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出弦波形態離散解析幾何模型和推導與模擬弦波鋸齒切屑負載在鋸切過程的特性方程,並探討不同單位波長切齒下的鋸切行為。影響單位波長的切屑負載因子有七項,分別為波長長度、單位波長的切齒數、鋸齒厚度、單位齒上的等效切深、每刃切齒間的重疊切削面積率、切削干涉比因子、和弦波振幅比例。模擬不同波長下n=3, 5, 7 和40的單位切齒負載分配可以發現最大切屑負載的齒刃皆為波峰相齒或波谷相齒的前一刃。切屑負載特性方程式可以藉由離散切齒函數、切齒序列窗函數和切齒間距函數捲積獲得。弦波式多刃切齒切削鋁6061所獲得移除單位體積材料的平均比切削能(n=1 到 n=7)為1580 MPa;在y (刀具側向)方向的平均比係數為0.44; 在z (刀具徑向)方向的平均比係數為0.2。切屑負載與平均切深、切齒寬度和切齒相位角相關。透過以材料移除率為目標函數,可建立最大切屑負載與切齒間干涉比之關係,比切削能和未變形切削面積之間的關係呈現超越負指數衰減曲線;弦波式多刃齒切削力模型與實驗量測的力量趨勢一致;切齒的磨耗位置與磨耗形態可以經由切齒負載特性函數預測。本研究可以達到下列目標:(I)對一般化弦波式多刃鋸齒建立切削力模型; (II)對於準靜態與高速動態切削製程發展切齒序列函數數學模型; (III)對弦波狀排列形態的切齒預測失效位置與磨耗形態; (IV)找出比切削能,切齒排列和切齒幾何間關係,同時對這參數建構理論模型; (V)從切齒拓撲、微觀切削到巨觀切削的觀點,去預測切屑負載與單位切削面積之間的關係; (VI)從統計學上分析多刃形態比切削能分布的變異誤差; (VII)使用離散捲積模型分析複雜多維度切削製程之切削特性; (VIII)對多刃切齒之摩擦效應與磨耗形態建立數學模型; (IX)以材料最大移除率獲得最佳化切齒間的排列重疊率。

    In this dissertation, a sinusoidal-type discrete analytic geometry model was proposed and sinusoidal serrated chip loading characteristics equations were derived for the simulation of the hack-sawing process. The factors affecting chip loading of unit wave, namely, the length of the wavelength, the cutters numbers of unit wavelength, saw blade thickness, the equivalent cutting depth per tooth, the cutting overlap-area ratio per cutter edge, the pitch per each cutter, the cutting overlap-area factor and the proportional factor of sinusoidal amplitude in hack-sawing were investigated. The effects of sinusoidal cutter arrangement on chip loading were simulated by the chip loading equations. It is found that the maximum chip loading is always in the front of the cutters, which is at either the peak or the trough of different phase with the numbers of wavelength unit 3, 5, 7 and 40, respectively. The chip loading characteristics depends on the discrete convolution of chip loading function, the cutter order window function and the cutter interval function. The average specific energy of sinusoidal multi-cutters for workpiece of Al 6061 in different wave length (n=1 to n=7) is 1580 MPa, the average specific coefficient in y-direction is 0.44 and the average specific coefficient in z-direction is 0.20. The chip loading on each cutter is related to the average cutting depth, cutting width and cutter angle. The maximum chip loading of cutter order occurs in cutting overlap-area ratio can be obtained by optimizing the material removal rate. The specific energy with multi-undeformed cutting areas demonstrated the trend as exponent decay. The simulated results from the established cutting force model for sinusoidal multi-cutters agreed well with the experimental measurements. The wear location and failure types of cutters for in hack-sawing process could be predicted.

    Abstract.............................................II 中文摘要..............................................III Acknowledgements.....................................XII Nomenclature.........................................XIII Chapter 1............................................1 Introduction.........................................1 1.1 Motivation.......................................1 1.2 Literature Review................................2 1.3 Research Objectives..............................9 Chapter 2............................................11 Mathematical Model for Sinusoidal-Cutters Chip loading .....................................................11 2.1 Overview.........................................11 2.2 Derivation of an Equivalent Cutter Chip Loading Equation.............................................14 2.3 Derivation of the chip loading characteristics...25 Chapter 3............................................28 Specific Energy Distributions for Sinusoidal Multi-Cutters..............................................28 3.1 Introduction.....................................28 3.2 Theoretical Model for Specific Energy and Cutters Arrangement..........................................30 3.3 Specific Energy Derivation for Sinusoidal Multi-Cutters..............................................38 3.4 Specific Coefficients in Groove-Sawing Process...41 3.5 Specific Energy Distributions under Cutter-by-Cutter Coupling.............................................44 3.6 Analysis for Groove-Sawing Geometry..............45 Chapter 4............................................48 Experimental Design and Initial Parameters Set-Up in Groove-Sawing Process.......................................48 4.1 Experimental Design for Holder...................48 4.2 Experimental Design in Groove-Sawing Process.....51 Chapter 5............................................54 Results and Discussion...............................54 5.1 Simulation of sinusoidal-type chip load for 40 cutters in a wave............................................54 5.2 Simulation and Experimental Results of chip load and specific energy for n=3, 5 and 7.....................61 5.3 Friction Effect on Sinusoidal-Wave Cutters.......66 5.4 Results and Discussion for Specific Energy and Groove-Sawing force……………………………………………………………………...............69 5.5 Single Groove-Sawing Force.......................72 5.6 Chip Loading Distributions for wavelength n=7 and Friction Effects.....................................73 5.7 Simulation for cutting force on cutters of unit wave.................................................74 5.8 Variation of Error for Sinusoidal Multi-Cutters and Cutters Topology.....................................75 5.9 Cutting Force Modeling...........................77 5.10 Cutter-by-Cutter Coupling Effect for Sinusoidal Multi-Cutters..............................................77 Chapter 6............................................86 Conclusions and Suggestions..........................86 6.1 Conclusions .....................................86 6.2 Suggestions......................................89 References...........................................90 Appendix.............................................93 Resume...............................................95

    Anderson. C, Anderson M.T, Staåh J.-E., Bandsawing. Part I: cutting force model including effects of positional errors, tool dynamics and wear, Int. J. Mach Tool Manuf. 41 (2001)pp. 227-236.
    Anderson C., Staåh J.-E., Hellbergh H., “ Bandsawing. Part II: detecting positional errors, tool dynamics and wear by cutting measurement,” Int. J. Machine Tool Manuf. 41 (2001) pp.237-253
    Buyuksagis I.S., Goktan R.M., Investigation of Marble Machining Performance Using an Instrumented Block-Cutter, J. Mater. Process. Technol. 169 (2005) pp.258–262
    Buyuksagis I.S., Effect of Cutting Mode on the Sawability of Granites Using Segmented Circular Diamond Sawblade, J. Mater. Technol. 183 (2007) pp.399-406
    Carlin, Appl, and Bridwell, R.P. Dubois, Effect of tensioning on buckling and vibration of circular saw blades, ASME Journal of Engineering for Industry, February (1975) pp.37-48.
    Chandrasekaran , H. Thoors, H. Hellbergh, L. Johansson, Tooth chipping during band sawing of steel, Annals of the CIRP 41 (1) (1992) pp.107-111.
    Cheung P., Li J. C. M. and Li J., Material Removal and Energy Dissipation during Sawing of Polycarbonate and Glass, Acta mater. Vol. 47, No. 6, (1999) pp. 1845-1857
    Davis P.R., Mehrfach-Seilsage zum Plattenschneiden von Granit, Ind. Diamond Rev. 4 (1997) pp.341–344.
    Dickel G., Seilsagen im U-Bahnschacht, Beton-Bohrer Ausgabe 14 (12) (1999) pp.14–15.
    Dugdale D.S.and Sarwar M., Fatigue Strength of Bandsaws with Hard Coatings, J. Mater. Process. Technol. 56 (1996) pp.729-732
    Gendraud P., Roux J.-C., Bergheau J.-M., Vibrations and Stress in Band Saws: A Review of Literature for Application to the Case of Aluminum-Cutting High-Speed Band Saws, J. Mater. Process. Technol. 88 (1999) pp.114–121
    Henderer W.E., Boor J.D., Holston J.R., Estimation of cutting forces pulsation in band sawing metals, Transactions of NAMRC 24 (1996) pp.33-38.
    Kalparkkian Serope, Schmid Steven R., Manufacturing Processes for Engineering Materials, Prentice Hall, Upper Saddle River New Jersey 07458, (2003), Fourth Edition.
    Kiener D., P. Russ, Diamant-Seilsage fur Steinbru‥ che, Ind. Diamond Rev. 31 (2) (1997) pp.150–151.
    Ko Tae Jo, Kim Hee Sool, Mechanistic Cutting Force Model in Band Sawing, Int. J. Mach Tool Manuf. 39 (1999) pp.1185-1197.
    Lee, R. S. and Mei K. J., “Development of Virtual Machine Tool for Simulation and Evaluation”, Computer-Aided Design & Applications, 8 ( 6 ), (2011) pp. 849-858.
    Luo S.Y, Characteristics of diamond sawblade wear in sawing, Int. J. Mach. Tool Manuf. 36 (1996) pp.661-772.
    Luo S.Y., Liao Y.S., Tsai Y.Y., Wear Characteristics in Turning High Hardness Alloy Steel by Ceramic and CBN Tools, J. Mater. Process. Technol. 88 (1999) pp.114–121
    Martellotti M. E., An Analysis of the Milling Process, Transaction of ASME 63 (1941) pp.677-700.
    Sarwar M., Gillibrand D., Bradbury S.R., Forces, surface finish and friction characteristics in surface engineered single- and multi-point cutting edges, Surface and Coating Technology 49 (1991) pp.443-450 .
    Sarwar Mohammed, Persson Martin, Hellbergh Håkan, Wear and failure modes in the bandsawing operation when cutting ball-bearing steel, Wear 259 ( 2005) pp.1144-1150.
    Sarwar M., Gillibrand D., Bradbury S.R., Forces, Surface Finish and Friction Characteristics in Surface Engineered Single- and Multi-Point Cutting Edges, Surf. Coat. Technol. 49 (1991) pp.443-450.
    Thompon P.J., A theoretical study of the cutting action of power hacksaw blades, Int. J. Mach Tool Manuf. 14 (1974) pp.199-209
    Thusty J., MacNeil P., Dynamics of cutting forces in end-milling, Annals of CIRP 24(1) (1975)pp. 21-25.
    Tonshoff and Hillmann-Apmann, Diamond tools for wire sawing metal components, Diamond and Related Materials 11 (2002) pp.742–748
    Ulsoy A.G., Morte C.D., Vibration of wide band saw blades, ASME Journal of Engineering for Industry 104 (1982) pp.71-78.
    Wen Q., Guo Y.B., Todd Beth A., An adaptive FEA method to predict surface quality in hard machining, J. Mater. Process. Technol. 173 (2006) pp.21–28
    Zeng, Chao-Jin, The establishment and validation of industrial band sawing model , Taiwanese theses, Department of Power Mechanical Engineering, National Tsing Hua University (1995)

    下載圖示 校內:2015-07-11公開
    校外:2015-07-11公開
    QR CODE