| 研究生: |
陳述文 Chen, Shu-Wen |
|---|---|
| 論文名稱: |
以混合逆算法預測十二吋矽晶圓在快速熱製程中所加入的熱通量 Application of the Hybrid Inverse scheme to Predict the Heat Flux of 12-in Silicon Wafer during Rapid Thermal Processing |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 快速熱製程 、逆向熱傳導 、熱通量 |
| 外文關鍵詞: | RTP, Inverse, Heat Flux |
| 相關次數: | 點閱:119 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一種混合拉式轉換法(Laplace transform technique)和中央差分法(Central difference method)的數值方法,並配合最小平方法(Least-squares scheme)來預測12吋晶圓中所加入的熱通量。首先利用拉式轉換法處理系統之時間域而後再以有限差分法處理系統轉換後之時間域,最後再以數值逆拉式轉換法求得測試物件之溫度場分佈以便預測出所加入的熱通量。拉式轉換法的優點是可以求得在某一特定時間的溫度值,而不需要由初始時間慢慢地求解。最小平方法的應用在於使數值結果能較快速地收斂。本文的數值模擬採用晶圓上下兩邊都受到對稱均勻的20 W/cm²光源照射熱通量,周圍環境溫度為27℃,晶圓從27℃被快速的加熱到1097℃,12吋晶圓的厚度為0.725 mm。由結果顯示,晶圓上所需的照射熱通量可有效地經由此逆向模式評估計算出來。
The present study introduces a hybrid scheme of the Laplace transform technique and central difference method in conjunction with the least-squares scheme is used to predict the heat flux of 12-in wafer. Time-dependent terms in the governing equation are removed by using the Laplace transform technique, and then the resulting differential equation is solved by using the finite-difference method. Temperature distributions in the domain are obtained by using the numerical inversion of Laplace transform. Due to the application of the Laplace transform technique, the temperature can be calculated at a specific time without step-by-step computation in the time domain. By the least-squares scheme, the convergence of iteration can become fast and stable. In this thesis, both sides of the wafer were subjected to a uniform heat flux of 20 W/cm² from 27℃ transition to a steady state of 1097℃ via simulation with an ambient temperature 27℃. The incident-heat-flux profile required for temperature uniformity across 12-in-diameter (0.775-mm-thick) silicon wafer were intuitively evaluated using inverse modeling. Our numerical result show that the incident heat fluxes on the wafer can be efficiently achieved using inverse modeling.
1. 莊達人, VLSI 製造技術,高立圖書有限公司,1997.
2. Shumakoy, N. V., “A method for the experimental study of the process of heating a solid body,” Soviet Physics-Technical Physics (Translated by Institute of Physics), Vol. 2, pp. 771, 1957.
3. Stolz, G. Tr., “Numerical solution to an inverse problem of heat condition for simple shapes,” ASME J. Heat Transfer, Vol. 82, pp. 20-26, Feb. 1960.
4. Beck, J. V., “Calculation of surface heat flux from an integral temperature history,” ASME J. Heat Transfer, 62-HT-46, 1962.
5. Sparrow, E. M. , Haji-Sheikh A. and Lundgern, T. S. “The inverse problem in transient heat conduction, “ J. Appl. Mech., Vol. 86e, pp. 369-375, 1964.
6. Beck, J. V., “Surface heat flux determination using an integral method,” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
7. Beck, J. V., “Nonlinear estimation applied to the nonlinear inverse heat. conduction problem,” Int. J. Heat Mass Transfer, Vol. 13, pp. 713-71, 1970.
8. Alifanov, O. M., “Solution of an inverse problem of heat conduction by iteration method,” J. of Eng. Phys., Vol. 26, No. 4, pp. 471-476, 1974.
9. Alnajem, N. M., and Özisik, M. N., “A direct analytical approach for solving linear inverse heat conduction problems,” ASME J. Heat Transfer, Vol. 107, pp. 700-703, 1985.
10. Scott, E. P., and Beck, J. V., “Analysis of order of the sequential regulation solutions of heat conduction problem,” ASME J. Heat Transfer, Vol. 111, pp.218-224, 1989.
11. Beck, J. V., and Murio, D. A., “Combined function specification regularization procedure for solution of inverse heat conduction problem,” AIAA J., Vol. 24, No. 180-185, January, 1986.
12. Huang, C. H., Özisik, M. N., “Inverse problem of determining the unknown wall heat flux in laminar flow through a parallel plate duct,” Numer. Heat Transfer, Part A, Vol. 21, pp. 55-70, 1992.
13.Huang, C. H., Özisik, M. N., “Inverse problem of determining the unknown strength of an internal plate heat source,” J. Franklin Institute, Vol. 329, No. 4, pp. 751-764, 1992.
14.Beck, J. V., Blackwell, B., and Chair, C. R. St., Jr, Inverse Heat Conduction:Ill-posed problem, Wiley, New York, 1985.
15.Arledge, R. G., and Haji-Sheikh, A., “A iterative approach to the solution of inverse heat conduction problem,” Numer. Heat Transfer, Vol. 1, pp. 365-376, 1978.
16.Woo, K. W., and Chow, L. C., “Inverse heat conduction by direct inverse laplace transform,” Numer. Heat Transfer, Vol. 4, pp. 499-504, 1981.
17.Raynaud, M., and Beck, J. V., “Methodology for comparison of inverse heat conduction methods,” ASME J. Heat Transfer, Vol. 110, pp. 30-37, 1988.
18.Yeung, W. K. and Lam, T. T., “ Second-order finite difference approximation for inverse determination of thermal conductivity,” Int. J. Heat Mass Transfer, Vol. 39, No. 17, pp. 3685-3693, 1996.
19.Bass, B. R. and Ott, L. J., “ A finite elment formulation of the two-dimensional inverse heat conduction problem,” Adv. Comput. Technol., Vol. 2, pp. 238-248, 1980.
20.Liu, Y. and Murio, D. A., “Numerical experiments in 2-D IHCP on bounded domains part I: the ‘interio’ cube problem,” Computer Math. Appl, Vol. 31, No. 1, pp. 15-32, 1996.
21.Chen, H. T., and Lin, J. Y., “Hybrid Laplace transform technique for non-linear transient thermal problems,” Int. J. Heat Mass Transfer, Vol. 34, pp. 1301-1308, 1991..
22.Chen, H. T., and Lin, J. Y., “ Numerical analysis for hyperbolic heat conduction,” Int. J. Mass Transfer, Vol. 36, pp. 2891-2898, 1993.
23.Chen, H. T., and Lin, J. Y., “Analysis of two-dimensional hyperbolic heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 37, pp. 153-164, 1994.
24.Chen, H. T., Wu, X.. Y., and Hsiao, Y. S., “Estimation of surface condition from the theory of dynamic thermal stresses,” Int. J. Therm. Sci.,May 27,2002. (to be appeared).
25.Honig, G., and Hirdes, U., “A method for the numerical inversion of Laplace transforms,” J. Comp. Appl. Math., Vol. 9, pp. 113-132, 1984.
26.Lin, S. P., and Chu H. S., “Thermal uniformity of 12-in silicon wafer during rapid thermal processing by inverse heat transfer method,” IEEE Transaction on Semiconductor Manufacturing, Vol. 13, No. 4, pp. 448-456, November 2000.
27.Borisenko V. E. and Hesketh P. J., “Rapid Thermal Processing of Semiconductors,” New York: Plenum , 1997.
28.A. Virzi, “Computer modeling of heat transfer in Czochralski silicon crystal growth,” J. Cryst. Growth, vol. 112, pp. 699–722, 1991.
29.G. Honing, and U. Hirdes, “A method for the numerical inversion of Laplace transforms”, J. Comp. Appl. Math., Vol. 9, pp. 113-132,1984.
30.H. T. Chen and J. Y. Lin, “Application of the Laplace transform to nonlinear transient problems”, Appl. Math. Modelling, Vol. 15, pp. 144-151, 1991.
31.Hill. C., Jones. S., and Boys. D., “Rapid Thermal Annealing-Theory and Practice”, in Reduced Thermal Processing for ULSI, NATO ASI Series B: Physics, pp. 143-180, 1989.