簡易檢索 / 詳目顯示

研究生: 程柏硯
Cheng, Bo-Yan
論文名稱: 鉍原子於碳化矽基板上石墨烯的吸附情形
Bismuth Adsorption on Epitaxial Graphene of Silicon Carbide Substrate
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 23
中文關鍵詞: 第一原理石墨烯鉍吸附碳化矽基板
外文關鍵詞: first principle, graphene, bismuth adsorption, silicon carbide substrate
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用第一原理模型去研究單層石墨烯於強烈的基板效應下,與鉍元素的吸附系統的幾何及電子性質。我們模擬的系統組成為:四層的基板、皺褶的緩衝層、微變形的單層石墨烯。並以基態能量、鉍吸附能、及鉍原子間交互作用,包含不同高度、交互作用的原子距離、吸附位置,去研究原子的吸附排列情形。鉍元素形成的六角陣列是由緩衝層和石墨烯之間的交互作用所主導。再進一步加溫到能克服50meV的位能障礙後,將產生以三角形和四邊形的奈米團簇。模擬的最穩定及亞穩結構結果和電子穿隧顯微鏡的觀察是相符的。且於態密度圖中,顯示出相對於費米能上的有限值,與掃描式電子穿隧所獲得的電導圖一致。

    Graphene has huge potential in electricity devices. The electric properties has been studied for years. At this study, our group tried to estimate how the substrate affects the adsorption atoms properties and comparing to experiments. We use first principle and density functional theory (DFT), with PAW pseudo-potentials. The results can explain the bismuth adsorption on silicon carbide preference distribution at room temperature well, and the atom number of a single cluster after thermal annealing.

    目錄 第一章 導論 1 第二章 理論計算與方法 3 第三章 結果與討論 4 第一節 幾何結構 4 第二節 吸附能與優化結構 6 第三節 奈米團簇 10 第四節 電子性質 13 第四章 結論 15 參考文獻 16 附錄 21 VASP的編譯及效率筆記 21 表目錄 表 一:不同原子位置上的吸附能和高度 6 表 二:對各種鉍奈米團簇的總能量和BI-BI相互作用能 11 圖目錄 圖 一:幾何結構 5 圖 二:鉍原子在單層石墨烯不同吸附位置的基態能量 8 圖 三:六角型鉍原子陣列的幾何結構 9 圖 四:鉍團簇的幾何圖形 12 圖 五:六角型鉍原子陣列的態密度 14

    [1] Novoselov, Kostya S., et al. “Electric field effect in atomically thin carbon films.” science 306.5696 (2004): 666-669.
    [2] Geim, Andre K., and Konstantin S. Novoselov. “The rise of graphene.” Nature materials 6.3 (2007): 183-191.
    [3] Novoselov, K. S. A., et al. “Two-dimensional gas of massless Dirac fermions in graphene.” nature 438.7065 (2005): 197-200.
    [4] Orlita, Milan, et al. “Approaching the Dirac point in high-mobility multilayer epitaxial graphene.” Physical review letters 101.26 (2008): 267601.
    [5] Wang, Shuai, et al. “High mobility, printable, and solution-processed graphene electronics.” Nano letters 10.1 (2009): 92-98.
    [6] Balandin, Alexander A., et al. “Superior thermal conductivity of single-layer graphene.” Nano letters 8.3 (2008): 902-907.
    [7] Barbarino, Giuliana, Claudio Melis, and Luciano Colombo. “Intrinsic thermal conductivity in monolayer graphene is ultimately upper limited: A direct estimation by atomistic simulations.” Physical Review B 91.3 (2015): 035416.
    [8] Lee, Changgu, et al. “Measurement of the elastic properties and intrinsic strength of monolayer graphene.” science 321.5887 (2008): 385-388.
    [9] Vadukumpully, Sajini, et al. “Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability.” Carbon 49.1 (2011): 198-205.
    [10] Zhang, Yuanbo, et al. “Experimental observation of the quantum Hall effect and Berry’s phase in graphene.” Nature 438.7065 (2005): 201-204.
    [11] Novoselov, K. S., et al. “Unconventional quantum Hall effect and Berrys phase of 2k in bilayer graphene.” Nature physics 2.3 (2006): 177-180.
    [12] Min, Hongki, et al. “Room-temperature superfluidity in graphene bilayers.” Physical Review B 78.12 (2008): 121401.
    [13] Perali, Andrea, David Neilson, and Alex R. Hamilton. ”High-temperature superfluidity in double-bilayer graphene.” Physical review letters 110.14 (2013): 146803.
    [14] Ryu, Sunmin, et al. “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate.” Nano letters 10.12 (2010): 4944-4951.
    [15] Elias, D. C., et al. “Control of graphene’s properties by reversible hydrogenation: evidence for graphane.” Science 323.5914 (2009): 610-613.
    [16] Yeh, Te-Fu, et al. “Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination.” Advanced Materials 26.20 (2014): 3297-3303.
    [17] Krasheninnikov, A. V., et al. “Embedding transition-metal atoms in graphene: structure, bonding, and magnetism.” Physical review letters 102.12 (2009): 126807.
    [18] Marchenko, D., et al. “Giant Rashba splitting in graphene due to hybridization with gold.” Nature communications 3 (2012): 1232.
    [19] Guinea, F., M. I. Katsnelson, and M. A. H. Vozmediano. ”Midgap states and charge inhomogeneities in corrugated graphene.” Physical Review B 77.7 (2008): 075422.
    [20] Lin, Shih-Yang, et al. “Feature-rich electronic properties in graphene ripples.” Carbon 86 (2015): 207-216.
    [21] Sutter, P., et al. “Electronic structure of few-layer epitaxial graphene on Ru (0001).” Nano letters 9.7 (2009): 2654-2660.
    [22] Hao, Yufeng, et al. “Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy.” Small 6.2 (2010): 195-200.
    [23] Lin, Chiun-Yan, et al. “Magneto-electronic properties of multilayer graphenes.” Physical Chemistry Chemical Physics 17.39 (2015): 26008-26035.
    [24] Guinea, F., M. I. Katsnelson, and A. K. Geim. ”Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering.” Nature Physics 6.1 (2010): 30-33.
    [25] Wong, Jen-Hsien, Bi-Ru Wu, and Ming-Fa Lin. “Strain effect on the electronic properties of single layer and bilayer graphene.” The Journal of Physical Chemistry C 116.14 (2012): 8271-8277.
    [26] Castro, Eduardo V., et al. “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect.” Physical Review Letters 99.21 (2007): 216802.
    [27] Lai, Y. H., et al. “Magnetoelectronic properties of bilayer Bernal graphene.” Physical Review B 77.8 (2008): 085426.
    [28] Mandeltort, Lynn, and John T. Yates Jr. “Rapid Atomic Li Surface Diffusion and Intercalation on Graphite: A Surface Science Study.” The Journal of Physical Chemistry C 116.47 (2012): 24962-24967.
    [29] Ito, Jun, Jun Nakamura, and Akiko Natori. “Semiconducting nature of the oxygen-adsorbed graphene sheet.” Journal of applied physics 103.11 (2008): 113712.
    [30] Ryu, Sunmin, et al. “Reversible basal plane hydrogenation of graphene.” Nano letters 8.12 (2008): 4597-4602.
    [31] Qu, Liangti, et al. “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.” ACS nano 4.3 (2010): 1321-1326.
    [32] Pi, K., et al. “Electronic doping and scattering by transition metals on graphene.” Physical Review B 80.7 (2009): 075406.
    [33] Machida, Motoi, Tomohide Mochimaru, and Hideki Tatsumoto. ”Lead (II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution.” Carbon 44.13 (2006): 2681-2688.
    [34] Chan, Kevin T., J. B. Neaton, and Marvin L. Cohen. ”First-principles study of metal adatom adsorption on graphene.” Physical Review B 77.23 (2008): 235430.
    [35] Khomyakov, P. A., et al. “First-principles study of the interaction and charge transfer between graphene and metals.” Physical Review B 79.19 (2009): 195425.
    [36] Balog, Richard, et al. “Bandgap opening in graphene induced by patterned hydrogen adsorption.” Nature materials 9.4 (2010): 315-319.
    [37] Li, Lu, et al. “Phase transitions of Dirac electrons in bismuth.” Science 321.5888 (2008): 547-550.
    [38] Hofmann, Ph. “The surfaces of bismuth: Structural and electronic properties.”Progress in surface science 81.5 (2006): 191-245.
    [39] Black, M. R., et al. “Infrared absorption in bismuth nanowires resulting from quantum confinement.” Physical Review B 65.19 (2002): 195417.
    [40] Bobaru, S., et al. “Competing allotropes of Bi deposited on the Al 13 Co 4 (100) alloy surface.” Physical Review B 86.21 (2012): 214201.
    [41] Wanekaya, Adam K. “Applications of nanoscale carbon-based materials in heavy metal sensing and detection.” Analyst 136.21 (2011): 4383-4391.
    [42] Shan, Dan, et al. “Polycrystalline bismuth oxide films for development of amperometric biosensor for phenolic compounds.” Biosensors and Bioelectronics 24.12 (2009): 3671-3676.
    [43] Li, Yuling, et al. “Bismuth oxide: a new lithium-ion battery anode.” Journal of Materials Chemistry A 1.39 (2013): 12123-12127.
    [44] Chen, H-H., et al. “Long-range interactions of bismuth growth on monolayer epitaxial graphene at room temperature.” Carbon 93 (2015): 180-186.
    [45] Chen, H-H., et al. “Tailoring low-dimensional structures of bismuth on monolayer epitaxial graphene.” Scientific reports 5 (2015).

    [46] Akturk, Olcay Uzengi, and Mehmet Tomak. “Bismuth doping of graphene.” Applied Physics Letters 96.8 (2010): 081914.
    [47] Hsu, Chia-Hsiu, Vidvuds Ozolins, and Feng-Chuan Chuang. “First-principles study of Bi and Sb intercalated graphene on SiC (0001) substrate.” Surface Science 616 (2013): 149-154.
    [48] Kresse, Georg, and Jurgen Furthmuller. “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.” Physical Review B 54.16 (1996):11169.
    [49] Perdew, John P., Kieron Burke, and Matthias Ernzerhof. “Generalized gradient approximation made simple.” Physical review letters 77.18 (1996): 3865.
    [50] Grimme, Stefan. “Semiempirical GGA-type density functional constructed with a long?range dispersion correction.” Journal of computational chemistry 27.15 (2006): 1787-1799.

    下載圖示 校內:2016-03-31公開
    校外:2016-03-31公開
    QR CODE