簡易檢索 / 詳目顯示

研究生: 韓相宜
Han, Shiang-Yi
論文名稱: 建立複數力學與量子力學間之關係
connecting complex mechanics to quantum mechanics
指導教授: 楊憲東
Yang, Ciann-Dong
共同指導教授: 蕭飛賓
Hsiao, Fei-Bin
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 112
中文關鍵詞: 複數力學量子力學古典統計力學量子流體複數機率密度
外文關鍵詞: Complex Mechanics, Quantum Mechanics, Classical Statistical Mechanics, Quantum Fluid, Complex Probability Density
相關次數: 點閱:146下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先,為了凸顯複數空間的延伸在討論軌跡與機率詮釋間的關係之重要性,吾人先探討複數力學作為結合古典力學與量子力學的力學體系,是如何利用複數空間的延伸來解釋與證明其他半古典量子理論中所提出的現象與假設。經由複數力學的分析,可以確定由量子漢彌爾頓理論所提出的轉折點的確提供了複數平面上的邊界條件。關於波姆力學中所假設之粒子具有不規則運動速度,經由複數力學證實其源自於複數形式波函數的虛部部分。另外,吾人提出非Hermitian量子力學是可由複數力學所涵蓋之。
    量子機率透過複數力學可證明其與古典複數機率投影在實數空間相等義。此結果引導出量子力學是滿足古典統計力學的重要結論。本論文利用複數軌跡建立了量子流體,並推導出在複數空間中量子流體所滿足的流體連續方程式、動量方程式與能量方程式。透過量子流體詮釋,吾人發現從虛部部分的能量守恆可以推導出波恩對於量子機率的假設。因此,吾人透過軌跡的詮釋可以將古典統計理論帶入量子力學中。例如:粒子的速度決定了其在某特地地方存在的可能性,而此結果證明和量子力學所提出的可能性相符合。
    另一方面,本研究提出當量子流體的軌跡流JT投影至實數軸的結果與量子機率流Jqm相符合。於是,粒子可能的運動情形可由軌跡流有具體視覺化的呈現,以取代抽象的量子機率流Jqm。藉由軌跡詮釋,伴隨著粒子運動軌跡的波函數可以藉由其量子作用函數S所重現,其中實部SR決定了波函數的相位,而虛部SI決定的其振幅。關於波函數,本篇論文以幾何的觀點分析其在複數平面上的所具有特色,發現波函數振幅的曲度是由位勢屏障的分佈所決定。最後吾人在複數平面上重現了漢彌爾頓的古典波,並分析其可能具有的動態情形。

    The complex space dilation plays a crucial role for exploring the relationship between the trajectory interpretation and the probability interpretation. To verify the importance of extending the space structure to a complex domain, we discuss in this dissertation that how complex mechanics can explain and verify the phenomena and postulates provided by other classical approaches. We confirm that the turning point provided by the conventional quantum Hamilton-Jacobi formalism represents the boundary condition in the complex plane. The irregular fluctuating motion postulated in Bohmian mechanics has been verified that comes from the imaginary part of the complex wave function. Furthermore, we point out that the non-Hermitian Hamiltonian mechanics can be embodied in the formulation of complex mechanics.
    The quantum probability is shown to be equivalent to the classical complex probability by projecting onto real subspace such that quantum mechanics satisfies classical statistical mechanics. We establish the quantum fluid in terms of the trajectory interpretation in complex space. The continuity equation, momentum equation, and energy equation of the quantum fluid in complex space are derived. According to the imaginary part of the energy conservation, we are able to verify the Born's postulate of quantum probability via the quantum fluid interpretation. Therefore, we confirm that the trajectory interpretation brings the classical statistical theory into quantum mechanics. For example, the particle's velocity determines the possibility of the particle being at a specific region which is compatible with the possibility presented by quantum mechanics.
    On the other hand, the quantum probability density current Jqm is shown to be equivalent to the trajectory flow current JT if we project JT onto the real axis. We can concretely present instead of using the abstract Jqm to visualize the probability and the potential motions that a particle could have. By giving quantum action function S associated with trajectories, we are able to reconstruct the wave function, where SR determines the phase and SI gives the magnitude. We also discuss the characteristics of the wave function in the complex plane from a geometric standpoint. It shows that, the curvature of the wave function is determined by the distribution of the potential barrier. We generalize Hamilton's classical wave program in the complex plane, and present the dynamic evolution that the quantum field might have.

    ABSTRACT (in Chinese) . . . . . . . . . . . . . . . . . . .i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . iii CHINESE ABSTRACT OF EACH CHAPTER . . . . . . . . . . . . . v ACKNOWLEDGMENTS. . . . . . . . . . . . . . . . . . . . . .xi CONTENTS . . . . . . . . . . . . . . . . . . . . . . . xiii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . xv NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . xviii Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . . 1 1.1 Background and Motivation. . . . . . . . . . . . . . . 1 1.2 Survey and Challenge . . . . . . . . . . . . . . . . . 5 1.3 Organization and Contribution of the Thesis . . . . . .9 Chapter 2 REVIEW OF CLASSICAL APPROACHES TO QUANTUM MECHANICS. . . . . . . . . . . . . . . . . . . . .13 2.1 The Wave Equation of Classical Mechanics . . . . . . .13 2.2 Quantum Hamilton-Jacobi Formalism . . . . . . . . . . 17 2.3 Bohmian Mechanics . . . . . . . . . . . . . . . . . . 20 2.4 The Complex ed Classical Approaches. . . . . . . . . .21 Chapter 3 INTRODUCTION OF COMPLEX MECHANICS AND COMPARISON WITH OTHER APPROACHES . . . . . . . . . . .25 3.1 The Concept of Complex Space . . . . . . . . . . . . .25 3.2 Conventional and Complex Quantum Hamilton-Jacobi Formalism . . . . . . . . . . . . . . . . . . . . . . . .27 3.3 The Complex Quantum Potential and Bohmian Mechanics . 30 3.4 The Complex Energy and Non-Hermitian Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 4 CLASSICAL STATISTICAL INTERPRETATION OF QUANTUM MECHANICS. . . . . . . . . . . . . . . . . . . . 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . .53 4.2 Quantum Fluid . . . . . . . . . . . . . . . . . . . . 54 4.3 Quantum Fluid in One-Dimensional Complex Plane. . . . 59 4.4 Probability Current of Trajectory Flow in the Complex Plane . . . . . . . . . . . . . . . . . . .. .. .. .. .. .70 4.5 Reconstruction and Characteristic of the Wave Function . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. . 81 4.6 Classical Statistical Description of Quantum Motions . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. 91 Chapter 5 CONCLUSIONS AND DISCUSSIONS. . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. 98 5.1 Conclusions and Discussions . . . . . . . . . . . . . 98 5.2 Future Works . . . . . . . . . . . . . . . . . . . . 100 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . 103 Appendix A . . . . . . . . . . . . . . . . . . . . . . . 106 Appendix B . . . . . . . . . . . . . . . . . . . . . . . 108

    [Allen 1986] Allen, R. E. and Menon, M. (1986) Subspace Hamiltonian Technique, Phys. Rev. B, 33, 5611-5616.
    [Anemogiannis 1993] Anemogiannis, E., Glytsis, E. N., and Gaylord, T. K. (1993) Bound and Quasibound State Calculations for Biased/Unbiased Semiconductor Quantum Heterostructures, IEEE J. Quantum Electronic., 29, 2731-2740.
    [Andriotis 1992] Andriotis, A. N. (1992) The Complex-Hamiltonian Approach, J. Phys.: Condens. Matter, 4, L633-L638.
    [Bender 1998] Bender, C. M. and Boettcher, S. (1998) Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry, Phys. Rev. Lett., 80, 5243-5246.
    [de Broglie] de Broglie, L. (1930) An Introduction to the Study of Wave Mechanics, E. P. Dutton and Com., Inc., New York.
    [Bohm 1952] Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in terms of Hidden Variables, Phys. Rev. 85, 166-179; Phys. Rev., 85, 180-193.
    [Bohm 1953] Bohm, D. (1953) Proof That Probability Density Approaches |ψ|² in Causal Interpretation of the Quantum Theory, Phys. Rev. 89, 458-466.
    [Bohm & Hiley a] Bohm, D. and Hiley, J. (1989) Non-locality and Locality in the Stochastic Interpretation of Quantum Mechanics, Phys. Rep., 172, 93-122.
    [Bohm & Hiley b] Bohm, D. and Hiley, J. (1993) The Undivided Universe-An ontological Interpretation of Quantum Theory, Routledge, London, 13-30.
    [Bohm & Vigier] Bohm, D. and Vigier, J. P. (1954) Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations, Phys. Rev., 96, 208-216.
    [Bohr 1948] Bohr, N (1948) On the Notions of Causality and Complementarity, Dialectica, 2, 312-319.
    [Born 1926] Born, M. (1926) Zur Quantenmechanik der Stoβvorgänge, Z. Phys., 37, 863-867. (English translation in Wheeler & Zurek (1983)).
    [Bylicki 1997] Bylicki, M., Jaskólski, W. and Oszwaldowski, R. R. (1997) Tunnelling in Asymmetrical Double Barrier Structures-Complex Coordinate Approach, Czech. J. Phys., 47, 373-378.
    [Castro 1991] de Castro, A. S. and Dutra, A. de S. (1991) On the Quantum Hamilton-Jacobi Formalism, Found. of Phys., 21, 649-663.
    [Chou 2008] Chou, C. C. and Wyatt, R. E. (2008) Considerations of the Probability Density in Complex Space, Phys. Rev. A., 78, 044101-1~044101-4.
    [Chou 2009] Chou, C. C. and Wyatt, R. E. (2009) Arbitrary Lagrangian-Eulerian Rate Equation for the Born Probability Density in Complex Space, Phys. Lett. A., 373, 1811-1817.
    [Dirac 1927] Dirac, P. A. M. (1927) The Quantum Theory of Dispersion, Proc. R. Soc. London. A, 114, 710-728.
    [Dirac 1958] Dirac, P. A. M. (1958) The Principles of Quantum Mechanics, Oxford Univ. Press, London.
    [Eisberg & Resnick] Eisberg, R. and Resnick, R. (1985) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, John & Wiley & Sons, Inc., 2^{nd} Ed., 166.
    [Fernandez 1999] Fernandez, F. M., Guardiola, R., Ros, J., Znojil, M. (1999) A Family of Complex Potentials with Real Spectrum, J. Phys. A: Math. Gen., 32, 3105--3116.
    [Goldstein 1987] Goldstein, S. (1987) Stochastic Mechanics and Quantum Theory, J. Statis. Phys., 47, 645-667.
    [Hall 2002] Hall, M. J. W. and Reginatto, M. (2002) Schrodinger Equation from an Exact Uncertainty Principle, J. Phys. A: Math and Gen., 35, 3289-3303.
    [Holland 1993] Holland, P. R. (1993) The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics, Cambridge University Press.
    [John 2002] John, M.V. (2002) Modified de Broglie-Bohm Approach to Quantum Mechanics, Found. of Phys. Lett., 15, 329-343.
    [John 2009] John, M.V. (2009) Probability and Complex Quantum Trajectories, Ann. of Phys., 324, 220-231.
    [Jumarie 2001] Jumarie, G. (2001) Can We Use Complex-Valued Fractional Brownian Motion to Derive a Fractal Space-Time Theory in Micro-Physics, Chaos, Solitons & Fractals, 12, 2155-2159.
    [Keller 1953] Keller, J. B. (1953) Bohm's Interpretation of the Quantum Theory in Terms of "Hidden" Variables, Phys. Rev., 89, 1040-1041.
    [Leacock 1983] Leacock, R. A. and Padgett, M. J. (1983) Hamilton-Jacobi Theory and the Quantum Action Variable, Phys. Rev. Lett., 50, 3-6. Leacock, R. A. and Padgett, M. J. (1983) Hamilton-Jacobi/Action-Angle Quantum Mechanics, Phys. Rev. D., 28, 2491-2502.
    [Misawa 1987] Misawa, T. (1987) A Stochastic Hamilton-Jacobi Theory in Stochastic Hamilton Mechanics for Diffusion Processes, IL NUOVO CIMENTO, 99, 179-199.
    [Nelson 1966] Nelson, E. (1966) Derivation of the Schrodinger Equation from Newtonian Mechanics, Phys. Rev., 150, 1079-1085.
    [Pavon 1995] Pavon, M. (1995) Hamilton's Principle in Stochastic Mechanics, J. Math. Phys., 36, 6774-6800.
    [Poirier 2008] Poirier, B. (2008) Flux Continuity and Probability Conservation in Complexified Bohmian Mechanics, Phys. Rev. A., 77, 022114-1~022114-9.
    [Rosen 1964] Rosen, N. (1964) The Relation Between Classical and Quantum Mechanics, Am. J. Phys., 32, 597-600.
    [Rosen 1986] Rosen, N. (1986) Found. Phys., 16, 687-700.
    [Schiff 1962] Schiff, R. (1962) Quasi-classical Theory of the Nonspinning Electron, Phys. Rev., 125, 1100-1108; Schiff, R. (1962) Quasi-Classical Transformation Theory, Phys. Rev., 125, 1109-1115.
    [Schwinger 1958] Schwinger, J. (1958) Quantum Electrodynamics, Dover, New York.
    [Wang 1997] Wang, M. S. (1997) Stochastic Interpretation of Quantum Mechanics in Complex Space, Phys. Rev. Lett., 79, 3319-3322.
    [Yang 2005a] Yang, C. D. (2005a) Wave-particle duality in complex space, Ann. of Phys., 319, 444-470.
    [Yang 2005b] Yang, C. D. (2005b) Solving Quantum Trajectories in Coulomb Potential by Quantum Hamilton-Jacobi Theory, Int. J of Quant. Chem., 106, 1620 - 1639.
    [Yang 2006] Yang, C. D. (2006) Quantum Hamilton Mechanics: Hamilton Equations of Quantum Motion, Origin of Quantum Operators, and Proof of Quantization Axiom, Ann. of Phys., 321, 2876-2926.
    [Yang 2008] Yang, C. D. (2008) On the Existence of Complex Spacetime in Relativistic Quantum Mechanics, Chaos, Solitons & Fractals, 38, 316-331.
    [Yang 2009] Yang, C. D. (2009) A New Hydrodynamic Formulation of Complex-Valued Quantum Mechanics, Chaos, Solitons & Fractals, 42, 453-468.
    [Yang 2010] Yang, C. D. (2010) Complex Mechanics, Asian Academic Publisher Limited, ISSN 2077-8139, Hong Kong.
    [Yang & Han 2007] Yang, C. D., Han, S. Y. and Hsiao, F. B. (2007) Nonlinear Dynamics Governing Quantum Transition Behavior, Int. J. Nonlinear Sciences and Numerical Simulation, 8, 411-416.
    [Yang & Han 2009] Yang, C. D. and Han, S. Y. (2009) Invariant Eigen-Structure in Complex-Values Quantum Mechanics." Int. J. Nonlinear Sciences and Numerical Simulation, 10, 407-423.

    下載圖示 校內:2011-08-30公開
    校外:2012-08-30公開
    QR CODE