簡易檢索 / 詳目顯示

研究生: 丘中岳
Chiu, Chung-Yueh
論文名稱: 可全方向全光控之染料摻雜膽固醇液晶光纖雷射
Omni-Directionally and All-Optically Controllable Dye-Doped Cholesteric Liquid Crystal Fiber Laser
指導教授: 李佳榮
Li, Chia-Jung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 82
中文關鍵詞: 膽固醇液晶全方向性光子晶體光纖同軸毛細管光致異構化雷射染料偶氮液晶
外文關鍵詞: cholesteric liquid crystal, omni-direction, photonic crystal fiber, coaxial capillary, photoisomerization, laser dye, azobenzene liquid crystal
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文成功製作以及研究可全光調控之全方向性染料摻雜膽固醇液晶填入光子晶體光纖與共軸毛細管微雷射器。製作上,將雷射與偶氮染料摻雜膽固醇液晶材料選擇性地填充入光子晶體光纖之纖心與外殼或共軸毛細管之內管管心與內外管間細縫。在光子晶體光纖之纖心內或在共軸毛細管內管管心的雷射染料摻雜膽固醇液晶會自組裝為徑向對稱分布之平面結構,其可視為具光學活性之布拉格洋蔥狀共振腔。而在光子晶體光纖之外殼內或在共軸毛細管內外管間縫隙的偶氮染料摻雜膽固醇液晶會自組裝為焦錐狀結構,其可視為具可全光且可全方向控制之光學開關。
    來自於雷射染料摻雜膽固醇液晶填充區的雷射可藉由偶氮染料摻雜膽固醇液晶填充區之全光控制造成全方向或部份方向輸出或完全不輸出。此全光控制機制乃藉由偶氮染料受紫外光與藍光分別照射後產生反-順與順-反異構化,進一步造成偶氮染料摻雜膽固醇液晶填充區在散射的焦錐態與穿透的各方同性態之間做等溫相變轉換。本論文所提出的全光調控光纖與毛細管雷射在生物影像、光療法、穿戴式裝置、透明顯示器等各方面皆極具應用潛力。

    This thesis successfully develops and investigates all-optically and omni-directionally controllable dye-doped cholesteric liquid crystal (DDCLC) infiltrating photonic crystal fiber (PCF) and coaxial capillary (CC) lasers. In the process of fabrication, the laser dye-doped CLC (LDDCLC) and azo-dye-doped CLC (ADDCLC) selectively infiltrate into the core and cladding of the PCF sample, that is, the internal capillary and the gap between the internal and external capillaries of the CC sample, respectively. The LDDCLC in the core of the PCF or the internal capillary of the CC self-organizes as a radially symmetric planar structure, consequently enabling the LDDCLC to function as an optically active Bragg-onion cavity. By contrast, the ADDCLC in the cladding of the PCF or the gap of the CC self-organizes as a focal conic structure. As a result, the ADDCLC functions as an all-optically and omni-directionally controllable light shutter.
    The lasing output from the LDDCLC-filled region can be all-optically controlled to emit omni-directionally or semi-directionally or off-emit in the isothermal phase transition between scattering focal conic state and transparent isotropic state through the UV beam-induced trans-cis and blue beam-induced cis-trans back isomerizations of the azo LCs in the ADDCLC-filled region. The potential of all-optically controllable PCF or CC in bio-image, photo-therapy, wearable devices, and transparent displays is significant.

    摘要 I Abstract II Acknowledgements III Contents IV List of Figures VII List of Tables XIII Chapter 1 Introduction 1 Chapter 2 Liquid Crystals 4 2-1 Introduction to Liquid Crystals 4 2-2 Classification of Liquid Crystals 5 2-2-1 Lyotropic Liquid Crystals 5 2-2-2 Thermotropic Liquid Crystals 5 2-3 Physical and Electrooptic Characteristics of Liquid Crystals 10 2-3-1 Birefringence 10 2-3-2 Dielectric Anisotropy 14 2-3-3 Elastic Continuum Theory of Liquid Crystals 15 Chapter 3 Theoretical Background of Cholesteric Liquid Crystals and Lasers 17 3-1 Optical Properties of Cholesteric Liquid Crystals 17 3-2 The Agents Influencing Cholesteric Liquid Crystals 19 3-2-1 Temperature 19 3-2-2 Magnetic and Electric Fields 20 3-2-3 Optical Fields 21 3-3 Basic Principles of Laser 21 3-3-1 Interaction of Single-Mode Light with The Atom 22 3-3-2 Population Inversion 24 3-3-3 The Basic Operation of Laser 27 3-4 The Mechanism of Distributed Feedback Lasing 28 3-5 The Mechanism of Dye-Doped Cholesteric Liquid Crystal Lasing 31 3-6 Photosensitive Materials 34 3-6-1 Photochromism 35 3-6-2 Photoisomerization of Azobenzene Derivatives 36 3-6-3 Photo-Induced Isothermal Phase transition of Azo-Dye-Doped Cholesteric Liquid Crystals 38 Chapter 4 Sample Preparation and Experimental Setup 40 4-1 Materials 40 4-1-1 Prescription of Laser-Dye-Doped Cholesteric Liquid Crystals 44 4-1-2 Prescription of Azo-Dye-Doped Cholesteric Liquid Crystals 45 4-2 Sample Preparation 45 4-2-1 Fabrication of LDDCLC and ADDCLC Infiltrating PCF Sample 45 4-2-2 Fabrication of LDDCLC and ADDCLC Infiltrating Coaxial Capillary Sample 48 4-3 Experimental Setups 50 4-3-1 Lasing Measurements of PCF and CC Lasers 50 4-3-2 Measurement for All-Optical Controllability features of ADDCLC Planar cells 51 4-3-3 Measurements for All-Optically controllable lasing features of PCF or CC Laser 53 Chapter 5 Results and Discussion 57 5-1 Lasing Emission of LDDCLC-Filling PCF and CC 57 5-1-1 Lasing Features of LDDCLC-Filling PCF and CC 57 5-1-2 Lasing Emission in LDDCLC-Infiltrated CC 60 5-2 All-Optical Controllability features of ADDCLC Planar cells 64 5-3 All-Optically controllable lasing features of PCF or CC Laser 67 5-3-1 All-Optically Controllable Lasing Emission of PCF Laser 67 5-3-2 All-Optically Controllable Lasing Emission of CC Laser 72 Chapter 6 Conclusion and Future Works 78 6-1 Conclusion 78 6-2 Future Works 78 References 80

    O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, "Surface-emitting fiber lasers," Optics Express 14 (9), 3929-3935 (2006).
    2 Alexander M. Stolyarov, Lei Wei, Ofer Shapira, Fabien Sorin, Song L. Chua, John D. Joannopoulos, and Yoel Fink, "Microfluidic directional emission control of an azimuthally polarized radial fibre laser," Nature Photonics 6 (4), 229-233 (2012).
    3 S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Phototunable photonic bandgap in a chiral liquid crystal laser device," Applied Physics Letters 84 (14), 2491-2493 (2004).
    4 Harry Coles and Stephen Morris, "Liquid-crystal lasers," Nature Photonics 4 (10), 676-685 (2010).
    5 Yuko Matsuhisa, Yuhua Huang, Ying Zhou, Shin-Tson Wu, Ryotaro Ozaki, Yuuki Takao, Akihiko Fujii, and Masanori Ozaki, "Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal," Applied Physics Letters 90 (9) (2007).
    6 Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Optics Express 14 (9), 3906-3916 (2006).
    7 P. G. de Gennes and J.Prost, The Physics of Liquid Crystals. (Oxford University, New York, 1993).
    8 S. Chandrasekhar, Liquid Crystals. (Cambridge University, New York, 1992).
    9 I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena. (John Wiley & Sons, New York, 1995).
    10 G. R. Fowles, Introduction to Modern Optics, 2nd ed. (University of Utah, New York, 1975).
    11 B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. (Wiley, New York, 1991).
    12 沈柯, 雷射原理教程. (亞東書局, 1990).
    13 D. C. O'shea, W. R. Callen, and W. T. Rhodes, Introduction to Lasers and Their Applications. (Addison Wesley, Boston, 1977).
    14 J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The Photonic band-edge laser - a new approach to gain enhancement," Journal of Applied Physics 75 (4), 1896-1899 (1994).
    15 H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," Journal of Applied Physics 43 (5), 2327-& (1972).
    16 H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell System Technical Journal 48 (9), 2909 (1969).
    17 L. S. Goldberg and J. M. Schnur, "Tunable internal-feedback liquid crystal laser," U.S. patent 3,771,065, 3 (November 6, 1973).
    18 V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Optics Letters 23 (21), 1707-1709 (1998).
    19 H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers,," Journal of Applied Physics 43 (5), 2327 (1972).
    20 I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, "Generation of a tunable radiation by impurity cholesteric liquid crystals," Jetp Letters 32 (1), 24-27 (1980).
    21 V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, "Lasing in chiral photonic structures," Progress in Quantum Electronics 27 (6), 369-416 (2003).
    22 H. Bouas-Laurent and H. Durr, "Organic photochromism," Pure and Applied Chemistry 73 (4), 639-665 (2001).
    23 M. Irie, "Diarylethenes for memories and switches," Chemical Reviews 100 (5), 1685-1716 (2000).
    24 Y. Hirshberg, "Reversible formation and fradication of colors by irradiation at low temperatures," Journal of the American Chemical Society 78 (10), 2304-2312 (1956).
    25 Y. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Applied Physics Letters 85 (22), 5182-5184 (2004).
    26 Alexander Lorenz and Heinz- S. Kitzerow, "Efficient electro-optic switching in a photonic liquid crystal fiber," Applied Physics Letters 98 (24) (2011).

    下載圖示 校內:2017-09-02公開
    校外:2017-09-02公開
    QR CODE