簡易檢索 / 詳目顯示

研究生: 陳家瑋
chen, chia-wei
論文名稱: 骨疾治療機震波產生器運動與姿態控制設計
Design of Motion and Attitude Control of a Shock Wave Generator in Orthotriptor
指導教授: 梁勝明
Liang, Shen-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 70
中文關鍵詞: 體外震波治療術
外文關鍵詞: ESWT
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    題 目: 骨疾治療機震波產生器運動與姿態控制設計
    學 生: 陳家瑋
    指導教授: 梁勝明

      體外震波治療術很早就被醫學界的泌尿科所採用,用來治療腎臟與泌尿系統的結石。隨著震波於醫學領域上的拓展,現今體外震波治療術已經不再只單純的應用於泌尿科上。成功大學醫學震波應用研究中心利用新型的電水式震波產生器,並搭配自動調整電極間距系統,使電擊棒每次產生的震波都能維持均勻的壓力,以避免因電擊棒的熔蝕造成聚焦壓力下降。本研究設計出一組良好的移動平台,擁有迅速地起步與煞停功能,而且有足夠的剛性,能承受懸臂及震杯之不同負載,另可搭配雷射定位系統或自動追蹤系統。
      在移動平台的設計上必須搭配好的硬體與軟體。硬體的設計方面,利用鋁擠材質的三軸移動平台並加上一組不銹鋼材質的懸臂,成為四軸運動機構,其採用兩只400W與兩只750W的AC伺服馬達作為傳動軸,並各自搭配伺服驅動器,利用一台由Delta Tau Data System公司製作的多軸馬達控制卡(PMAC)作為控制器,接收電腦傳來的訊號,經RS232送入PMAC中同時控制四只AC伺服馬達旋轉,帶動移動軸移動。另外於懸臂上加裝一組減速機,用以降低轉速增加扭矩。
      於軟體應用方面,利用PMAC所附加的軟體,於電腦上設定的PID參數值儲存於PMAC,並傳入驅動器帶動AC伺服馬達轉動,其跟隨軌跡經AC伺服馬達之Encoder回授儲存於電腦上,處理回授的訊號觀察PID參數對於伺服馬達的超越量(overshooting)、跟隨誤差量的多寡加以調整,而找到一組適用於不同負載的PID參數值。
      經不同負載的重覆實驗,吾人找出適合X軸與Y軸之最佳PID參數(Kp = 1.5×105、Kd = 0、Ki = 2×104)和適合Z軸與懸臂轉軸之最佳PID參數(Kp = 3×105、 Kd = 0、Ki = 2×104)。亦即此兩組參數於不同負載時,三軸移動能有最小的跟隨誤差與最小的overshoot值。

    Abstract
    Title: Design of Motion and Attitude Control of a Shock Wave Generator in Orthotriptor
    Student:Chia-Wei Chen
    Advisor:Shen-Min Liang

     Extracorporeal shock wave lithotripsy has been adopted by urologists for treating urinary stones for the past twenty years. With the progress in the medical shock-wave studies, Extracorporeal Shock Wave Therapy (ESWT) has been applied to orthopedics. In this study, a new type of a shock wave generator with an automatic gap-controlled system for ESWT is designed in the Research Center of Medical Shock Wave Application at National Cheng Kung University, which can produce stable pressure outputs. We design a smoothly moving platform for the shock-wave generation system. This moving platform has the abilities of fast acceleration and deceleration. With enough stiffness, it can bear a variety of loads on the generator arm. Moreover, the platform can further be compatible with a laser locating system.
     On the aspect of hardware, we assemble the moving platform by using three pieces of aluminum tables and a generator arm of stainless steel, which is able to move in four-axis movements. Four AC servomotors of two 400W and two 750W with servo drivers are used as driving devices. A PMAC controller is used to receive the signals from a computer through RS232 and to control the four AC servomotors at the same time. Thus the position and attitude of the shock wave generator can be controlled.
     On the aspect of software, we utilize the software installed in the PAMC controller. We define a set of parametric values for the PID parameters on the computer, which is transmitted and stored to the PMAC controller. Following a step command, the responses of all four servomotors were gathered and stored as files on the computer. We analyzed the data for the overshoots and associated errors under different PID parameters. Therefore a set of parameters was found to be suitable for a variety of loads.
     We have experimentally optimized the PID parameters for the four-axis with and without loading by several trials. It is found that the parameters Kp = 1.5×105, Kd = 0 and Ki = 2×104 are suitable for the X and Y axes, and Kp = 3×105, Kd = 0 and Ki = 2×104 for the Z and axes. The rise times of responses to commands for these two sets of the PID parameters are shortest with less error and overshoot. Namely, these two sets of parameter values result in a least followed error and least overshooting for three axial movements at different loading.

    目錄 中文摘要…………..……………………………………………..………………….i 英文摘要…………………………………..………………………….……………..iii 誌謝…………..………………………………………………………......v 目錄………..………………..…………………………………………...vi 表目錄…..………………..………………………………………………..viii 圖目錄………..…………………………………………………………..ix 符號說明..………………….…………………………………………………xi 第一章: 緒論 1-1前言………….………………..…………………………………………1 1-2 文獻回顧………………..…………....…………………………………….2 1-3 研究動機與目的…………………………….…………………………….3 第二章: 理論分析 2-1 震波基本原理……………………………………………………………...5 2-2 球震波的基本特性………………….…..…………….……………..…5 2-3電水式震波產生器…………..……………….……………………….6 2-4狀態方程式…………………………………...………………………7 2-5 PMAC AC伺服馬達控制卡………………….………………………8 2-6 比例積分微分控制理論(Proportional, Integral and Derivative, PID)…10 第三章: 實驗設備及方法 3-1 三軸移動平台……………………..……………….……………………..13 3-2 伺服馬達…………………………….…………..…………………….13 3-3減速機………………….…………………………………………14 3-4 PMAC PID控制器………………….……………………………………14 3-5 半橢圓反射體……………………….……………………………………16 3-6 自動調整電擊棒間距系統………….……………………………………16 第四章: 結果與討論 4-1 不同移動軸最佳PID參數的選取……..…………………………..…….18 4-1-1 X軸及Y軸PID參數選取……………...……………..……….19 4-1-2 Z軸與旋轉PID參數選取………….……………………….....19 4-2 不同移動軸最佳PID參數的選取……..…………………………..…….20 4-2-1 移動軸無加裝震杯……………………………………………...21 4-2-2移動軸加裝震杯……………………………………………...22 4-2-3移動軸加裝震杯及水囊……………………………………….23 4-3 固定參數不同負載的比較..…………………………………………..24 第五章: 結論與未來工作 5-1結論…………………………..……………………….…………………26 5-2 未來工作………………………………………………………………….27 參考文獻……………….……...………………………………...….. 28 表目錄 表2.1人體組織的物理特性…………………..……….…………………..…..31 表3.1移動平台規格…………………..……….…………………………..…..32 表3.2減速機規格表…………………..……………….…………………..…..33 表3.4橢圓方程式……………………..……………….…………….……..…..33 表4.1 PID參數比較表…………………………………….…………….....…..34 表4.2無震杯時,不同PID參數上升時間表格…………….……………..…..35 表4.3裝震杯時,不同PID參數上升時間表…………………………….…..36 表4.4震杯加水囊,不同PID參數上升時間表………………………………..37 表4.5各運動軸固定參數時上升時間表……………………….………….…..38 圖目錄 圖2.1簡單的震波產生方式…………………..……….…………………..…..39 圖2.2理想震波產生器:一維平面震波…………………….……………..…..39 圖2.3球形震波…………………….………………………………..……..…...40 圖2.4不同時間爆震波之壓力分佈……………………...….……………..…..41 圖2.5電水式震波產生器概要圖…………………….……………..………....42 圖2.6電水式震波產生器在水下產生球形震波……………………………....42 圖2.7電水式震波產生器震波傳遞圖…………………….………..………....43 圖2.8伺服控制箱……………………….…………….……………..………....44 圖2.9 PID控制器控制伺服馬達方塊流程圖……………..………..………....45 圖3.1三軸移動平台……………………….………….……………..………....46 圖3.2本實驗用伺服馬達………………….………….……………..………....47 圖3.3本實驗用伺服馬達驅動器………………….….……………..………....47 圖3.4減速機………………….……………………….……………..………....48 圖3.5步階響應圖………………….………………….……………..………....49 圖3.6半橢圓震杯反射體-上視圖………………….…….………....………....50 圖3.7半橢圓反射體設計概要圖…………………….……………..………....51 圖3.8控制系統概要圖………………….…………………………..………....52 圖3.9間距控制流程圖…………………….……………..…………………....52 圖3.10控制程式流程圖………………….………………………..…………..53 圖3.11間距控制系統加裝伺服馬達(前視圖)……………………………..54 圖3.12間距控制系統加裝伺服馬達(側視圖)……………..…..…………..54 圖4.1-1馬達響應曲線圖……………..…..……………………………...……..55 圖4.1 X軸響應曲線圖…………..…..…………………………...……...……..56 圖4.2 X軸誤差曲線圖…………..…..…………………………...……...……..56 圖4.3 Z軸響應曲線圖…………..…..…………………………...……...……..57 圖4.4 Z軸誤差曲線圖…………..…..…………………………...……...……..57 圖4.5旋轉軸響應曲線圖…………..…..……………………...……...………..58 圖4.6旋轉軸誤差曲線圖………..…..…………………………...……...……..58 圖4.7 X軸響應曲線圖(無震杯)………………………………...……...……..59 圖4.8 X軸誤差曲線圖(無震杯)………………………………...……...……..59 圖4.9 Y軸響應曲線圖(無震杯)………………………………...……...……..60 圖4.10 Y軸誤差曲線圖(無震杯)……………………………...……...……..60 圖4.11 Z軸響應曲線圖(無震杯)……………………………...……...……..61 圖4.12 Z軸誤差曲線圖(無震杯)……….……………………...……...……..61 圖4.13旋轉軸響應曲線圖(無震杯)…………………………...……...……..62 圖4.14旋轉軸誤差曲線圖(無震杯)……….…………………...……...……..62 圖4.15 X軸響應曲線圖(裝震杯)……………………………...……...……..63 圖4.16 X軸誤差曲線圖(裝震杯)……………………………...……...……..63 圖4.17 Y軸響應曲線圖(裝震杯)……….……………………...……...……..64 圖4.18 Y軸誤差曲線圖(裝震杯)…………………………...……...……….64 圖4.19 Z軸響應曲線圖(裝震杯)……….……………………...……...……..65 圖4.20 Z軸誤差曲線圖(裝震杯)…………………………...……...……….65 圖4.21旋轉軸響應曲線圖(裝震杯)……….………………....……...……..66 圖4.22 旋轉軸誤差曲線圖(裝震杯)……………….……...……...……….66 圖4.23 X軸響應曲線圖(震杯加水囊)………………………...……...……..67 圖4.24 X軸誤差曲線圖(震杯加水囊)………………………...……...……..67 圖4.25 Y軸響應曲線圖(震杯加水囊)………………………...……...……..68 圖4.26 Y軸誤差曲線圖(震杯加水囊)………………………...……...……..68 圖4.27 Z軸響應曲線圖(震杯加水囊)………………………...……...……..69 圖4.28 Z軸誤差曲線圖(震杯加水囊)………………………...……...……..69 圖4.29 旋轉軸響應曲線圖(震杯加水囊)……………………...……...……..70 圖4.30 旋轉軸誤差曲線圖(震杯加水囊)……………………...……...……..70 符號說明 a 橢圓的半長軸 b 橢圓的半短軸 c 橢圓的焦距 F1 橢圓第一焦點 F2 橢圓第二焦點 通過波前之後的壓力突升(pressure jump) P 壓力 P+ 最大正壓力 P- 負壓力 起始壓力 r 半徑 密度 起始密度 u+ΔP 震波所做的功率 u+ 震波誘導速度 Tr 上升時間 td 延遲時間 tp 尖峰時間 MP 最大超越量

    參考文獻

    1. Petty, R. W. and Kantrowitz, A., “The Production and Stability of Converging Shock Waves,” Journal of Applied Physics, Vol. 22, No. 7, pp. 878-886,1951.

    2. Bailitis, E.,“Der Schallimpuls eines Flussigkeitsfunkens (The pressure pulse of a liquid spark),” Zeitschrift fur angewandte Physic einshchlie β lch Nckleonik, Vol. 9, pp. 429-434, 1957.

    3. Hausler, E. and Kiefer, W.,“Anregung von Srosswellen in Flussigkeiten durch Hochgeschwindigkeitswassertropfen,” Verh Dtsch Physik Ges, Vol. 10, pp. 36-42 , 1971.

    4. Chaussy, C., Schmiedt, E., Jocham, D., Schuller, Brendel, W., Forsssman, B., and Walther, “First Clinical Experience with Extracorporeally Induced Destruction of Kideny Stones by Shock Waves,” Journal of Urology, Vol. 127, pp. 417-420, 1982.

    5. Chaussy, C., Schmiedt, E., Jocham, D., Schuller, J., Brendel, and Liedl, B., “Extracorporeal Shock Wave Lithotripsy (ESWL) for Treatment of Urolithiasis,” Urology, Vol. 93, pp. 59-66, 1984.

    6. T. Patrick, B. Finlayson, J. Robert, H. Gossip, C. Wallace, R.Walker S. Walck and M. Nasr, “Measurement of Shock Wave Pressure Used for Lithoripsy,” Journal of Urology, Vol. 136, pp. 733-738, 1986.

    7. Valchanow V., Michailow P, “High Energy Shock Wave in the Treatment of Delayed and Non-union Fractures,” Int. Orthopaed, 15:181, 1991.

    8. Wang, C. J., Pai, C. H., Huang, S. Y., “Shock Wave Enhanced Neovascularization at the Tendon Bone Tunction, an Experiment in dog Model,” 3rd Congress of the International Society for Musculoskeletal Shock Wave Therapy (ISMST), Naples, June 1-3, 2000, P. 96.

    9. Wang, C. J., Pai, C. H., Huang, S. Y.,“Pathomechanism of Shock Wave Induced Injuries on Femoral Artery, Vein and Nerve,” 3rd Congress of the International Society for Musculoskeletal Shock Wave Therapy (ISMST), Naples, June 1-3, 2000, P. 95.

    10. Husain, J. Lynn, N. K. Jones, D. K. G. N. Collins and O’Reilly, P. H., “Extracoporeal shock wave therapy in the management of Peyronie’s disease:initial experience,” BJU International, No. 86, pp. 466-468, 2000.

    11.Wang, C. J., Ko, J. Y., Chen, H. S., “Treatment of Calcifying Tendinitis of the Shoulder With Shock Wave Therapy,” Clinical Orthopaedics and Related Research, June , No. 387, pp. 83-99, 2001.

    12. Ko, J. Y., Chen H. S., Chen, L. M., “Treatment of Lateral Epicondylitis of the Elbow With Shock Waves,” Clinical Orthopaedics and Related Research, No. 387, pp. 60-67, June 2001.

    13. Chen, H. S., Chen, L. M., Huang, T. W., “Treatment of Painful Heel Syndrome With Shock Waves,” Clinical Orthopaedics and Related Research, No. 387, pp. 41-46, June 2001.

    14. Wang, C. J., Chen H. S., Chen., C. E. Yang., K. D., “Treatment of Nonunions of Long Bone Fractures With Shock Waves,” Clinical Orthopaedics and Related Research, No. 387, pp. 95-101, June 2001.

    15. Wang, F. S. Yang, K. D. Chen, R. F. Wang, C. J. Sheen-Chen, S. M., “Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-β1, ” J Bone Joint Surg [Br] Vol. 84-B, No. 3, pp. 457-461, April 2002.

    16. Sturtevant, B., “Shock Wave Physics of Lithotriptors,” in Smiths’s Textbook of Endourology, Quality Medical Publishing, Inc., pp. 529-552, 1996.

    17. Delta Tau Data Systems, “PMAC Software Reference,” Delta Tau Data Systems, Inc., 1997.

    18. Minorsky, N., “Directional Stability of Automatically Steered Bodies,” J. Amer. Soc. Naval Engineers, No. 42, pp. 280-309, 1922.

    19. 李宜達,控制系統設計與模擬使用MATLAB/SIMULINK,全華科技,1997

    20. M. De Santis Romano, “A novel PID configuration for speed position control,” Journal of Dynamic System, Measurement and Control, Transaction of the ASME, Vol. 116, pp. 542-549, 1994.

    21. Hang, C. C., Astrom, K. J., and Ho, W. K., “Refinements of the Ziegler-Nichols Tuning Formula,” IEE Proceedings-D, Vol. 138, No. 2, pp.111-118, 1991.

    22. Delta tau Data Systems, “PMAC User’s Manual,” Delta tau Data Systems, Inc., 1997.

    23.楊智光, 國立成功大學航空太空工程學系碩士論文, “體外震波碎石機反射罩杯之設計,” 中華民國八十七年六月十日.

    24. 周傑鴻, 國立成功大學航空太空工程學系碩士論文, “骨疾用之震波產生器之設計與性能評估,” 中華民國九十三年六月.

    25. 郭昭霖, 國立成功大學醫學工程研究所碩士論文, “體外震波碎石機自動追蹤系統,” 中華民國八十九年六月.

    26. 楊維楨, 自動控制, 三民書局, 1986.

    下載圖示 校內:2007-07-15公開
    校外:2020-07-15公開
    QR CODE