簡易檢索 / 詳目顯示

研究生: 黃雅琳
Huang, Ya-Lin
論文名稱: Zakharov 方程和非線性薛丁格方程的孤立波穩定性
Stability of Solitary Waves for the Zakharov Equations and the Fourth Order Nonlinear Schr"{o}dinger Equation
指導教授: 方永富
Fang, Yung-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 53
中文關鍵詞: 札克洛夫系統非線性薛丁格系統穩定性孤立波基態
外文關鍵詞: Zakharov system, NLS, stability, solitary waves, ground state
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們仔細研讀了M. Ohta 教授的論文”Stability of solitary waves for the Zakharov equations in one space dimension” 與M. Maeda 教授的論文“Stability of ground states of NLS with fourth order dispersion”並且闡述了相關細節在本篇報告裡。在這兩篇論文中,都是討論方程的孤立波解,也可稱作駐波解,與它本身的穩定性,在能量最低的時候,解是穩定的。而我們先針對Zakharov 方程去作探討,利用Zakharov 方程與薛丁格方程的相似之處,用變分法的工具來完成證明。在M. Maeda 教授這篇論文中,我們
    針對擁有四次微分項的薛丁格方程進行探討,藉著這極小的四次微項,來讓二維薛丁格方程的最低能量解達到穩定。而我們除了詳讀這兩篇論文之外,也補充了作者們省略的證明細節,以及修正一些打印等方面的小錯誤。

    We study the work of professor M. Ohta, ”Stability of solitary waves for the Zakharov equations in one space dimension”, and the work of professor M. Maeda, ”Stability of ground states of NLS with fourth order dispersion”, then elaborate details in this article.
    In both papers, we discuss the solitary wave solutions of the equations, also known as standing wave solution, and the stability. With the lowest energy, the solution is stable. We first discuss the Zakharov equation and use the similarities between the Zakharov equation and the Schrödinger equation to complete the proof, using variational approach. In professor M. Maeda’s paper, we discuss the Schrödinger equation with a fourth-order
    derivative term. With small parameter in fourth-order term, the minimum energy solution of the two dimensional Schrödinger equation is stable. In addition to reading these two papers, we also added some details that the authors omitted, as well as some errors in printing.

    1 Introduction p.1 2 Preliminaries and Notations p.2 3 Zakharov Equations p.5 3.1 main theorem p.5 3.2 Proof of Theorem 3.1 p.10 4 Nonlinear Schrödinger Equation with Fourth Order Dispersion p.30 4.1 main theorem p.30 4.2 Proof of Theorem 4.4 p.35 4.3 Proof of Theorem 4.5 p.47 References p.52

    [1] M. Ohta, Stability of solitary waves for the Zakharov equations in one space dimension. 数理解析研究所講究録, 908: 148-158, 1995.
    [2] M. Maeda, Stability of ground states of NLS with fourth order dispersion. Adv. Stud. Pure Math. 64, 445-452, 2015.
    [3] C. Sulem and P. L. Sulem, Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Acad. Sci. Paris 289, 173-176, 1979.
    [4] G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion. SIAM J. Appl. Math., 62, 1437-1462(electronic), 2002.
    [5] H. Added and S. Added, Existence globale de solutions fortes pour les équations de la turbulence de Langmuir en dimension 2. C. R. Acad. Sci. Paris 299, 551-554, 1984.
    [6] H. Kikuchi, Stable standing waves for two-dimensional Klein-Gordon-Schrödinger system. preprint.
    [7] J. Ginibre, G. Velo, The global Cauchy problem for the non linear Schrödinger equation revisited. Ann. Inst. Henri Poncaré, Anal. non lineaire 2, 309-327, 1985.
    [8] J. Gubbons, S. G. Thornhill, M. J. Wardrop and D. Ter Haa, On the theory of Langmuir solutions. J. Plasma Phys. 17, 153-170, 1977.
    [9] L. Glangetas and F. Merle, Existence of self-similar blow-up solutions for Zakharov equation in dimension two. Comm. Math. Phys. 160, 173-215, 349-389, 1994.
    [10] M. Grillakis, J. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160-197, 1987.
    [11] M. Grillakis, J. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry II. J. Funct. Anal. 94, 308-348, 1990.
    [12] M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472-491, 1985.
    [13] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87, 567-576, 1982.
    [14] P. L. Lions, The Concentration-compactness principle in the calculus of variations. The locally compactness. Ann. Inst. Henri Poncaré, Anal. non lineaire 1, 109-145, 223-283, 1984.
    [15] R. Fúkuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power
    nonlinearity and potentials. Adv. Differential Equations. 10, 259-276, 2005.
    [16] S. Cui and C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces Hs(Rn) and applications. Nonlinear Anal. 67, 687-707, 2007.
    [17] S. H. Schochet and M. I. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Comm. Math. Phys. 106, 569-580, 1986.
    [18] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85, 549-561, 1982.
    [19] T. Cazenave, Semilinear Schrödinger equations. American Mathematical Soc., Vol. 10, 2003.
    [20] T. Ozawa and Y. Tsutsumi, Existence and smoothing effect of solutions fo the Zakharov equations. Publ. RIMS, Kyoto Univ. 28, 329-361, 1992.
    [21] V. E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP 35, 908-914, 1972.
    [22] V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion. Phys. D, 144, 194-210, 2000.
    [23] Walter A. Strauss, Partial differential equations. ew York, NY, USA: John Wiley & Sons, 1992.
    [24] Richard L. Wheeden and Antoni Zygmund, Measure and Integral: An Introduction to Real Analysis, Second Edition. USA, CRC Press, 2015.
    [25] Kôsaku Yosida, Functional Analysis, Second Edition. Springer-Verlag Berlin Heidelberg, 209-211, 1995.

    無法下載圖示 校內:2018-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE