簡易檢索 / 詳目顯示

研究生: 林玉珠
Lin, Yu-Chu
論文名稱: 雷射光干涉微影技術系統之建立及應用於相位光罩製作
Laser interference lithography and its application to fabricate phase mask
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 96
中文關鍵詞: 雷射光干涉微影電漿蝕刻技術相位光罩阻擋層
外文關鍵詞: Laser interference lithography, plasma etching technology, phase mask, stop layer
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究利用兩道波長為325 nm之等強度雷射光所產生之干涉條紋製作週期性結構,再分別討論利用正向曝光方式(forward exposure)與背向曝光方式(backside exposure)製作一維週期性結構時所產生的差異: 利用正向曝光方式製作週期為239 nm一維結構時,易造成結構倒塌和彎曲。若利用背向曝光方式製作週期為239 nm一維結構時,可藉由曝光時間的不同而製作出不同深寬比的結構且結構比較完整。依此,我們旋轉基板角度,即可製作出週期為350 nm的二維孔洞結構。接著使用電漿感應耦合蝕刻系統(Inductively Coupled Plasma Reactive Ion Etch)對以正向曝光方式製作的一維結構進行蝕刻,並討論改變蝕刻參數對結構輪廓造成的影響。
    最後,我們使用嚴格耦合波分析法(Rigorous Coupled Wave Analysis, RCWA)計算相位光罩(Phase Mask)所需的深度,依此分別製作出一維、二維的相位光罩。探討其在不同偏振與曝光方式下所產生的結果: 在背向曝光方式下若利用週期為356 nm一維相位光罩的正負一階光干涉可得到週期為178 nm的一維結構,而以二維相位光罩可製作出三維結構。然而,我們成功解決當光罩週期小於入射光波長時,一階繞射效率很低而無法輕易製作出週期減半的結構。因此利用阻擋層去阻擋週期為232 nm的光罩的零階光,而使一階光彼此干涉而產生週期為116 nm的一維結構。

    In this study, the fabrication of periodic structures was based on the interference fringes produced by two equal intensity laser beams (wavelength= 325 nm). The results of fabricating the one-dimensional periodic structure were compared with by using the forward exposure method and the backside-exposure method. When using the forward exposure method to fabricate the one-dimensional periodic structure with a period of 239 nm, the structure could easily collapse and bend. However, if using the backside-exposure method to fabricate the one-dimensional periodic structure with a period of 239 nm, we can fabricate structures with different aspect ratio by varying the exposure time and these structures are regular and uniform. Furthermore, we produced the two-dimensional hole structure with a period of 350 nm by rotating the substrate. Then the inductively coupled plasma etching system was introduced to etch the one-dimensional periodic structure fabricated by the forward exposure method. And the impact on the structure profile by changing the etching parameters was discussed.
    Finally, we used the rigorous coupled-wave analysis to estimate the required depth of the phase mask. The one-dimensional and the two-dimensional phase mask were then fabricated, respectively. The results from the different polarizations and exposure methods were discussed. When using the backside-exposure method with the one-dimensional phase mask with a period of 356 nm, the one-dimensional structure with a period of 178 nm was produced with the 1st order diffracted beams from the phase mask. By using the two-dimensional phase mask, the three-dimensional structures were fabricated. Furthermore, when the period of mask is less than the wa-velength of incident light, the diffraction efficiencies of 1st order beams are getting smaller as compared with that of 0th order beam. Therefore, we used the stop layer to suppress the zero-order beam from the mask with a period of 232 nm. The one-dimensional structure with a period of 116 nm was produced with interference of the 1st order beams from the mask.

    中文摘要 I Abstract II 誌謝 IV 目錄 VI 表目錄 X 圖目錄 XI 第一章緒論 1 1.1前言 1 1.2論文架構 2 第二章建構雷射光干涉微影技術及其製程發展 3 2.1 曝光參數對其結構的影響 3 2.1.1文獻回顧 3 2.1.2紫外光干涉微影技術 4 2.2 研究動機 10 2.3 干涉系統的架構 11 2.4 試片的準備 13 2.4.1 清洗基板與去水烘烤 13 2.4.2 光阻塗佈 14 2.4.3 軟烤 18 2.4.4 曝光、曝後烤與顯影 19 2.4.5 硬烤 20 2.5 試片結構的觀察 20 2.5.1曝光參數對一維週期結構的影響 20 2.5.2正向曝光與背向曝光方式的比較 22 2.5.3二維週期結構 31 第三章 電感耦合式電漿乾式蝕刻製程 34 3.1 文獻回顧 34 3.1.1乾蝕刻機制 34 3.1.2蝕刻原理與機制 35 3.2 研究動機 39 3.3 蝕刻參數調控 40 3.3.1 O2與SF6的氣體比對蝕刻的影響 40 3.3.2 RF功率對蝕刻輪廓的影響 53 3.3.3 二氧化矽與光阻做為雙層阻擋層 64 第四章 相位光罩光學理論 68 4.1 文獻回顧 68 4.1.1相位光罩理論與應用 68 4.2 研究動機 71 4.3 光學計算與結果 71 4.3.1 一維週期結構光學計算 71 4.3.2 一維週期相位光罩 74 4.3.3 正向曝光與背向曝光對一維週期結構的影響 75 4.3.4 利用阻擋層抑制零階光 80 4.3.5 二維週期結構光學計算 83 4.3.6 二維週期相位光罩 84 第五章 結論 91 5.1 實驗總結 91 5.2 未來展望 92 文獻回顧 93

    1.K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "BRAGG GRATINGS FABRICATED IN MONOMODE PHOTOSENSITIVE OPTICAL FIBER BY UV EXPOSURE THROUGH A PHASE MASK," Appl. Phys. Lett. 62, 1035-1037 (1993).
    2.G. E. Moore, "Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965)," Proceedings of the Ieee86, 82-85 (1998).
    3.E. H. Anderson, K. Komatsu, and H. I. Smith, "ACHROMATIC HOLOGRAPHIC LITHOGRAPHY IN THE DEEP ULTRAVIOLET," J. Vac. Sci. Technol. B 6, 216-218 (1988).
    4.X. L. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, "Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications," J. Vac. Sci. Technol. B 14, 3339-3349 (1996).
    5.M. Farhoud, M. Hwang, H. I. Smith, M. L. Schattenburg, J. M. Bae, K. Youcef-Toumi, and C. A. Ross, "Fabrication of large area nanostructured magnets by interferometric lithography," IEEE Trans. Magn. 34, 1087-1089 (1998).
    6.T. A. Savas, M. Farhoud, H. I. Smith, M. Hwang, and C. A. Ross, "Properties of large-area nanomagnet arrays with 100 nm period made by interferometric lithography," J. Appl. Phys. 85, 6160-6162 (1999).
    7.X. L. Chen, and S. R. J. Brueck, "Imaging interferometric lithography: A wavelength division multiplex approach to extending optical lithography," J. Vac. Sci. Technol. B 16, 3392-3397 (1998).
    8.E. J. Saccocio, "APPLICATION OF LLOYDS MIRROR TO X-RAY HOLOGRAPHY," Journal of the Optical Society of America 57, 966-& (1967).
    9.L. F. Johnson, G. W. Kammlott, and K. A. Ingersoll, "GENERATION OF PERIODIC SURFACE CORRUGATIONS," Appl. Optics 17, 1165-1181 (1978).
    10.T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167-4170 (1996).
    11.J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
    12.H. H. Solak, and C. David, "Patterning of circular structure arrays with interference lithography," J. Vac. Sci. Technol. B 21, 2883-2887 (2003).
    13.H. H. Solak, "Space-invariant multiple-beam achromatic EUV interference lithography," Microelectronic Engineering 78-79, 410-416 (2005).
    14.A. M. Prenen, J. C. A. van der Werf, C. W. M. Bastiaansen, and D. J. Broer, "Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography," Adv. Mater. 21, 1751-+ (2009).
    15.R. D. Guenther, Modern optics (JOHN WILEY and SONS, 1990).
    16."SU8_2002-2025 ", http://www.microchem.com/products/pdf/SU8_2002-2025.pdf.
    17.A. Ghatak, ed. Optics (2005).
    18.L. Pang, M. Nezhad, U. Levy, C. H. Tsai, and Y. Fainman, "Form-birefringence structure fabrication in GaAs by use of SU-8 as a dry-etching mask," Appl. Optics 44, 2377-2381 (2005).
    19.J. S. Michael Quirk ed. Semiconductor Manufacturing Technology.
    20.B. Q. Wu, A. Kumar, and S. Pamarthy, "High aspect ratio silicon etch: A review," J. Appl. Phys. 108 (2010).
    21.A. Kamto, R. Divan, A. V. Sumant, and S. L. Burkett, "Cryogenic inductively coupled plasma etching for fabrication of tapered through-silicon vias," J. Vac. Sci. Technol. A 28, 719-725 (2010).
    22.M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park, and J. W. Baldwin, "Cryogenic etch process development for profile control of high aspect-ratio submicron silicon trenches," J. Vac. Sci. Technol. B 25, 21-28 (2007).
    23.A. L. G. C.C. Welch, T. Wahlbrink, M.C. Lemme, T. Mollenhauer, "Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas," (2006).
    24.M. J. de Boer, J. G. E. Gardeniers, H. V. Jansen, E. Smulders, M. J. Gilde, G. Roelofs, J. N. Sasserath, and M. Elwenspoek, "Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures," J. Microelectromech. Syst. 11, 385-401 (2002).
    25.H. V. Jansen, M. J. de Boer, K. Ma, M. Gironès, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, "Black silicon method XI: oxygen pulses in SF6plasma," Journal of Micromechanics and Microengineering 20, 075027 (2010).
    26.U. Sokmen, A. Stranz, S. Fundling, H. H. Wehmann, V. Bandalo, A. Bora, M. Tornow, A. Waag, and E. Peiner, "Capabilities of ICP-RIE cryogenic dry etching of silicon: review of exemplary microstructures," Journal of Micromechanics and Microengineering 19 (2009).
    27.R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, "Passivation mechanisms in cryogenic SF6/O-2 etching process," Journal of Micromechanics and Microengineering 14, 190-196 (2004).
    28.J. Pereira, L. E. Pichon, R. Dussart, C. Cardinaud, C. Y. Duluard, E. H. Oubensaid, P. Lefaucheux, M. Boufnichel, and P. Ranson, "In situ x-ray photoelectron spectroscopy analysis of SiOxFy passivation layer obtained in a SF6/O-2 cryoetching process," Appl. Phys. Lett. 94 (2009).
    29.A. F. Isakovic, K. Evans-Lutterodt, D. Elliott, A. Stein, and J. B. Warren, "Cyclic, cryogenic, highly anisotropic plasma etching of silicon using SF6/O-2," J. Vac. Sci. Technol. A 26, 1182-1187 (2008).
    30.J. M. Stillahn, J. M. Zhang, and E. R. Fisher, "Surface interactions of SO2 and passivation chemistry during etching of Si and SiO2 in SF6/O-2 plasmas," J. Vac. Sci. Technol. A 29 (2011).
    31.P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, "STUDY AND ANALYSIS OF SUBMICRON-PERIOD GRATING FORMATION ON POLYMERS ABLATED USING A KRF LASER-IRRADIATED PHASE MASK," Appl. Phys. Lett. 64, 3389-3391 (1994).
    32.D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, "Three-Dimensional Nanofabrication with Elastomeric Phase Masks," The Journal of Physical Chemistry B 111, 12945-12958 (2007).
    33.S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, "Three-dimensional nanofabrication with rubber stamps and conformable photomasks," Adv. Mater. 16, 1369-1373 (2004).
    34.W.-C. C. Chun-Hung Lin, Chung-I Hsieh, Wen-Huei Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic Engineering 83, 1798-1804 (2006).
    35.D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, "Three-dimensional nanofabrication with elastomeric phase masks," J. Phys. Chem. B 111, 12945-12958 (2007).
    36.A. Ghatak, Optics (2005).

    下載圖示 校內:2015-08-16公開
    校外:2015-08-16公開
    QR CODE