簡易檢索 / 詳目顯示

研究生: 蕭至宏
Hsiao, Chih-Hung
論文名稱: 成長二六族化合物半導體與其光電特性之研究
Growth of II-VI Compound Semiconductors and their Optoelectronic Properties
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 203
中文關鍵詞: 分子束磊晶奈米線奈米錐氧化銅鋅
外文關鍵詞: MBE, nanowire, nanotip, Cu-ZnO
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以分子束磊晶法於矽基板上成長高密度ZnSe系列二六族化合物半導體奈米線並研究其物理、光電特性之研究及使用磁性濺鍍系統沈積Cu-ZnO薄膜之研究與應用,其中可分為兩部份: ZnSe系列奈米線與p-type Cu-ZnO薄膜紫外光檢測器元件。
    首先在ZnSe奈米線成長方面,我們成功利用分子束磊晶法於矽基板上成長低溫230˚C , 280˚C 和320˚C ZnSe奈米線,進而可以得到成長溫度280˚C為奈米線最佳成長條件後,並進而成功製作出光檢測器元件。
    當入射波長365 nm輸出功率為0.6mW時,可以發現ZnSe奈米線紫外光光檢測器於偏壓0.1V下,計算出擁有較大的光-暗電流比為90。隨後成長三元ZnCdSe, ZnSeTe及四元ZnCdSeTe奈米線及奈米錐。在Cd與Te元素摻雜應用方面,並利用分子束磊晶方成長出高品質及高密度三元Zn0.9Cd0.1Se和ZnSe0.95Te0.05奈米線及奈米錐並製作成光檢測器,在分析上可以看出此兩種奈米線,擁有ZnSe閃鋅礦及CdSe,ZnTe混合之烏采結構,並且發現由於Te摻雜於ZnSe奈米線將使得光激發光光譜有27 nm的紅位移現象,並當ZnSeTe奈米錐於光檢測器偏壓5V下,計算出擁有較大的光-暗電流比為40。隨後摻雜Cd(13%)和Te(2%)元素並成長出四元Zn0.87Cd0.13Se0.98Te0.02奈米錐及製作出光檢測器。在物性分析上可以看出ZnCdSeTe奈米錐,擁有ZnSe、ZnTe、CdSe及CdTe閃鋅礦及烏采混合結構,並且發現由於Cd(13%) 和Te(2%) 摻雜將導致光激發光光譜與ZnSe奈米線有67nm的紅位移現象,並且此外發現ZnCdSeTe 奈米錐光檢測器於偏壓5V下,可看出開關轉換時間小於2秒,並擁有良好的回復特性。根據三元ZnCdSe, ZnSeTe和四元ZnCdSeTe奈米線及奈米錐特性,我們可以進而成長ZnSe/ZnCdSe、ZnSe/ZnSeTe和ZnSe/ZnCdSeTe異質結構奈米錐,並詳細探討其物理特性及光特性。
    (1)關於ZnSe/ZnCdSe異質結構及超晶格奈米線方面,利用分子束磊晶法成長高密度ZnSe/ZnCdSe異質結構奈米線於矽基板上,並改變ZnCdSe量子井厚度為6、12、18 和 24 nm。從光激發光光譜可看出由於量子侷限效應的關係,光激發相對ZnSe奈米線擁有較大的光強度並且從光激發光光譜可發現ZnSe/ZnCdSe奈米線的活化能為22 meV、41 meV、67 meV 和129 meV。(2) 關於ZnSe/ZnSeTe 奈米錐方面,利用分子束磊晶法成長高密度ZnSe/ZnSeTe奈米錐於矽基板上,並改變ZnSeTe量子井厚度為16、20和24 nm。從光激發光光譜可看出由於量子侷限效應的關係,光激發相對ZnSeTe奈米錐擁有較大的光強度並且從光激發光光譜可發現ZnSe/ZnSeTe奈米錐的活化能為76 meV、46 meV和19 meV。(3) 關於ZnSe/ZnCdSeTe奈米錐方面並利用分子束磊晶法成長高密度ZnSe/ZnCdSeTe超晶格奈米錐於矽基板上並改變ZnCdSeTe量子井厚度為12、16、20和24 nm。從光激發光光譜可看出由於量子限制的關係,光激發相對ZnSe和ZnCdSeTe擁有較大的光強度並且從光激發光光譜可發現ZnSe/ZnCdSeTe奈米錐的活化能為189 meV、205 meV、292 meV和240 meV。
    最後,本論文利用磁性濺鍍系統於玻璃基板上沈積氧化銅鋅(Cu-ZnO, Cu 1%)薄膜並利用快速熱退火系統於真空下改變退火溫度為500˚C、600˚C、700˚C、800˚C和900˚C。由穿透光實驗發現,Cu-ZnO成長於玻璃基板上退火800˚C呈現出高透光率為85%,並且由霍爾量測發現出退火800˚C之Cu-ZnO薄膜呈現出p型摻雜型式,電洞載子濃度、遷移率及電阻係數分別為1.94×1017 cm-3、5.01 cm2 /V s 與6.44×10-2 Ω cm。
    在p-type Cu-ZnO 紫外光檢器方面,當Cu-ZnO薄膜於光檢測器偏壓5V下,計算出擁有較大的光-暗電流為26,並且擁有良好的回復特性。隨後利用銦錫氧化層(ITO)作為緩衝層成長Cu-ZnO薄膜,可改善Cu-ZnO本身的氧缺陷,進而成長出較佳的Cu-ZnO薄膜。由穿透光實驗發現,Cu-ZnO薄膜成長於玻璃基板上退火700˚C及800˚C呈現出高透光率87%與81%。

    In this dissertation, a high density ZnSe-based II-VI group compound semiconductors nanowires was grown onto the Si(100) substrate by molecular beam epitaxy (MBE) and the preparation of Cu (1%)-doped ZnO thin films by RF magnetron sputtering method. Hence, the dissertation is divided into two parts, one is the investigation of ZnSe-based nanowires, and the other is that of p-type Cu-ZnO film UV photodetectors.
    In the beginning of this dissertation, we were success to grow the ZnSe nanowires on Si oxidized substrates were prepared at low temperature from 230°C, 280°C and 320°C, respectively. It can be seen that high quality ZnSe nanowires prepared at 280°C were successfully grown on oxidized Si substrates and the fabricated photodetector.
    With light of wavelength 365 nm was incident, It was found that the measured ZnSe nanowire UV photodetector, we could achieve a photo current to dark current contrast ration was larger than 90 under 0.1V bias. Subsequently, the substrate was transferred into the growth chamber to grow the ternary ZnCdSe, ZnSeTe nanowire/tips and quaternary ZnCdSeTe nanotips. With 10% and 5% Cd, Te-doped element incorporation, the growth of high density ternary ZnSe0.95Te0.05 nanotips on oxidized Si(100) substrate by MBE and the fabricatin of ZnSeTe nanotip-based photodetector. It was found that the as-grown ZnSeTe nanotips exhibited mixture of cubic zinc-blende and hexagonal wurtzite structures and it was also found the large 27 nm red-shift in peak position of Te-doped the ZnSe nanotips. The measured ZnSeTe nanotips photodetector, we could achieve a photo current to dark contrast ration was larger than 40 under 5V bias. With (13%) Cd-doped and (2%) Te-doped element incorporation, the growth of high density quaternary ZnCdSeTe nanotips on oxidized Si(100) substrate and the fabricatin of ZnCdSeTe nanotips photodetector. It was found that the as-grown ZnCdSeTe nanotips the ZnSe、ZnTe、CdSe and CdTe exhibited mixture of cubic zinc-blende and hexagonal wurtzite structures and it was also found the large 67 nm red-shift in peak position of Te-doped and Cd-doped the ZnSe nanotips. Furthermore, it was found that the operation speeds of the fabricated ZnCdSeTe nanotip photodetector were fast with turn-on and turn-off time constants both less than 2 Sec by applying a 5V bias. Subsequently, we report the “bottom-up” growth of ZnSe/ZnCdSe, ZnSe/ZnSeTe and ZnSe/ZnCdSeTe heterostructure/superlattice nanotips. Physical and optical properties of the heterostructure/superlattice nanotips will also be discussed.
    (1) About of ZnSe/ZnCdSe heterostructure nanowires, we report the growth of high density ZnSe/ZnCdSe heterostructure nanowires on oxidized Si substrate by MBE. It was found that photoluminescence intensities observed from these ZnSe/ZnCdSe heterostructure nanowires were much larger than that observed from the homogeneous ZnSe nanowires. Furthermore, it was found that activation energies for the nanowires with well widths of 6, 12, 18 and 24 nm were 22, 41, 67 and 129 meV, respectively. (2) About of ZnSe/ZnSeTe superlattice nanotips, we report the growth of high density ZnSe/ZnSeTe superlattice nanotips on oxidized Si substrate by MBE. It was found that photoluminescence intensities observed from these ZnSe/ZnSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnSeTe superlattice nanotips with well widths of 16, 20 and 24 nm were were 76, 46 and 19 meV, respectively. (3) About of ZnSe/ZnCdSeTe superlattice nanotips, we report the growth of high density ZnSe/ZnSeTe superlattice nanotips on oxidized Si substrate by MBE. It was found that photoluminescence intensities observed from these ZnSe/ZnCdSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnCdSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnCdSeTe superlattice nanotips with well widths of 12, 16, 20 and 24 nm were 189, 205, 292 and 240 meV, respectively.
    Finally, we report on the preparation of Cu (1%)-doped ZnO thin films on glass substrate by RF magnetron sputtering method. Rapid thermal annealing (RTA) treatments were carried out on as deposited samples in vacuum from 500◦C, 600◦C, 700◦C, 800◦C and 900◦C for 30 minutes. Further, all the films annealed in vacuum at different temperatures are highly transparent in the visible region of the spectrum. The transmittance in the visible range (350-800nm) was greater than 85% for the samples annealed above 800◦C. Hall effects measurements taken at room temperature indicate that the Cu-ZnO thin films annealed in vacuum. I was found at 800◦C in an vacuum atmosphere exhibit p-type behavior with a high hole concentration of 1.94×1017 cm-3, a hole mobility of 5.01 cm2 /V s, and a resistivity of 6.44×10-2 Ω cm. With light of wavelength 365 nm was incident, It was found that the measured Cu-ZnO thin films UV photodetector, we could achieve a photo current to dark current contrast ration was larger than 26 for the fabricated photodetector under 5V bias.
    Subsequently, we report on the preparation of Cu (1%)-doped ZnO thin films on ITO substrate by RF magnetron sputtering method. The substrate used is ITO deposited on glass (ITO/glass) endures to 900◦C thermal annealing in vacuum. All the films annealed in vacuum at different temperatures are highly transparent in the visible region of the spectrum. The transmittance in the visible range (350-800 nm) was greater than 87% and 81% for the samples annealed above 700◦C and 800◦C.

    Abstract (in Chinese) ---------------------------------------------------------------- I Abstract (in English) -------------------------------------------------------------- IV Acknowledgement --------------------------------------------------------------- VIII Contents --------------------------------------------------------------------------- X Table Captions ------------------------------------------------------------------- XIV Figures Captions ------------------------------------------------------------------ XV CHAPTER 1 Introduction --------------------------------------------------------- 1 1-1 Background and Motivation --------------------------------------------------------------- 1 1-1-1 Background of Zn-based II-VI compound materials ------------------------------ 1 1-2 Vapor phase method ------------------------------------------------------------------------- 4 1-2-1 Vapor-Liquid-Solid (VLS) growth and catalyst-supported techniques --------- 4 1-3 Nanowire electronic and optolectronic devices ----------------------------------------- 6 1-3-1 Semiconductor nanowire -------------------------------------------------------------- 6 1-3-2 Axial heterostructures nanowire ----------------------------------------------------- 7 1-4 Therory of photodetectors ------------------------------------------------------------------ 8 1-4-1 Principle of MSM photodetector --------------------------------------------------- 10 1-5 Organization of dissertation -------------------------------------------------------------- 10 CHAPTER 2 Experimental Equipment and Relevant Theory ----------- 27 2-1 Background of Molecular Beam Epitaxy system -------------------------------------- 27 2-2 Background of Radio frequency magnetron sputtering system ---------------------- 30 2-3 Experimental details and analytic -------------------------------------------------------- 31 2-3-1 Atomic Force Microscope (AFM) System ---------------------------------------- 31 2-3-2 Hall Measurement System ---------------------------------------------------------- 32 2-3-3 High Resultion X-ray Diffractometer (XRD) ------------------------------------- 32 2-3-4 Photoluminescence (PL) Spectrum System --------------------------------------- 33 2-3-5 Raman spectrometer ----------------------------------------------------------------- 34 2-3-6 Field Emission Scanning Electron Microscope (FESEM) ---------------------- 35 2-3-7 Field Emission Transmission Electron Microscopy (FETEM) ----------------- 35 2-3-8 Electron Spectroscopy for Chemical Analysis (ESCA) ------------------------- 36 2-3-9 Current-Voltage (I-V) Measurement System ------------------------------------- 36 CHAPTER 3 MBE growth of ZnSe nanowires on oxidized silicon substrate ----------------------------------------------------------------------------- 44 3-1 A novel method for the formation of ZnSe nanowires on oxidized silicon substrate ------------------------------------------------------------------------------------------------- 45 3-2 Results and discussion -------------------------------------------------------------------- 46 3-3 Summary ------------------------------------------------------------------------------------ 49 CHAPTER 4 A ZnSe nanowires photodetector prepared on oxidized Si(100) substrate by MBE -------------------------------------------------------- 58 4-1 Fabrication of ZnSe nanowires photodetector ----------------------------------------- 59 4-2 Optical and physical properties of ZnSe nanowires ----------------------------------- 60 4-3 Electrical properties of ZnSe nanowires ------------------------------------------------ 61 4-4 Summary ------------------------------------------------------------------------------------ 62 CHAPTER 5 Growth of ternary compound semiconductor nanowires/ tips photodetector ------------------------------------------------------------------ 70 5-1 Growth of ternary ZnCdSe nanowires -------------------------------------------------- 70 5-1-1 Fabrication of ZnCdSe nanowires photodetector -------------------------------- 70 5-1-2 Optical and physical properties of ZnCdSe nanowires -------------------------- 72 5-1-3 Electrical properties of ZnCdSe nanowires --------------------------------------- 74 5-2 Growth of ZnSe1-xTex nanotips and the fabrication of ZnSe1-xTex nanotip-based photodetector ------------------------------------------------------------------------------ 74 5-2-1 Fabrication of ZnSeTe nanotips photodetector ----------------------------------- 75 5-2-2 Optical and physical properties of ZnSeTe nanotips ----------------------------- 76 5-2-3 Electrical properties of ZnSeTe nanotips ------------------------------------------ 79 5-3 Summary ------------------------------------------------------------------------------------ 80 CHAPTER 6 A quaternary ZnCdSeTe nanotips photodetector ---------- 98 6-1 Fabrication of ZnCdSeTe nanotips photodetector ------------------------------------- 99 6-2 Optical and physical properties of ZnCdSeTe nanotips ----------------------------- 100 6-3 Electrical properties of ZnCdSeTe nanotips ------------------------------------------ 103 6-4 Summary ----------------------------------------------------------------------------------- 104 CHAPTER 7 Formation of ZnSe-based heterostructure/superlattice nanowires and nanotips on oxidized Si(100) substrate by MBE system ---------------------------------------------------------------------------------------- 117 7-1 Growth of ZnSe/ZnCdSe heterostructure nanowires -------------------------------- 118 7-1-1 Analysis of optical and physical properties -------------------------------------- 119 7-2 Growth of ZnSe/ZnSeTe superlattice nanotips --------------------------------------- 122 7-2-1 Analysis of optical and physical properties -------------------------------------- 123 7-3 Growth of ZnSe/ZnCdSeTe superlattice nanotips ------------------------------------ 126 7-3-1 Analysis of optical and physical properties --------------------------------------127 7-4 Summary ----------------------------------------------------------------------------------- 129 CHAPTER 8 Growth and characterization of Cu-doped ZnO thin films and their application to photodetector --------------------------------------- 150 8-1 Growth and characterization of Cu-doped ZnO films deposited by RF magnetron sputtering method on glass substrate ------------------------------------------------- 152 8-1-1 Analysis of optical and physical properties -------------------------------------- 153 8-1-2 Fabrication and analysis of Cu-doped ZnO ultraviolet PD on glass substrate --------------------------------------------------------------------------- 156 8-2 Cu-doped ZnO Films deposited by RF magnetron sputtering method on ITO/Glass -------------------------------------------------------------------------------- 157 8-2-1 Growth and characterization of Cu-doped ZnO films on ITO/glass substrate ---------------------------------------------------------------------------------------- 157 8-2-2 Analysis of optical and physical properties -------------------------------------- 158 8-3 Summary ----------------------------------------------------------------------------------- 160 CHAPTER 9 Conclusion and Future Work --------------------------------- 192 9-1 Conclusion --------------------------------------------------------------------------------- 192 9-2 Future Work ------------------------------------------------------------------------------- 193 Table Captions Chapter 1 Table 1-1 Summary of 1D metal oxide nanostructures synthesized using different methods ------------------------------------------------------------------------------------------ 18 Table 1-2 Comparison of the properties of ZnO with other wide bandgap semiconductors -------------------------------------------------------------------------------------------- 20 Chapter 6 Table 6-1 Crystal structure and lattice constants of group-II-VI semiconductors -------- 108 Chapter 8 Table 8-1 Morphological properties of the surface of Cu-ZnO thin films ----------------- 173 Table 8-2 Different diffraction angle, FWHM and average crystallite size of Cu-ZnO thin films for XRD patterns ---------------------------------------------------------------- 173 Table 8-3 The XPS results of the as-deposited sample --------------------------------------- 173 Table 8-4 The XPS results of the sample annealed at 900◦C --------------------------------- 173 Table 8-5 Optical transmittance of Cu-ZnO thin films annealed at different temperatures -- ------------------------------------------------------------------------------------------- 173 Table 8-6 Morphological properties of the surface of Cu-ZnO thin films ----------------- 174 Table 8-7 Different diffraction angle, FWHM and average crystallite size of Cu-ZnO thin films for XRD patterns ---------------------------------------------------------------- 174 Table 8-8 The XPS sresults for the as-deposited sample ------------------------------------- 174 Table 8-9 The XPS results for the sample annealed at 900◦C ------------------------------- 174 Table 8-10 Optical transmittance of Cu-ZnO thin films annealed at different temperatures ----------------------------------------------------------------------------- 174 Figures Captions Chapter 1 Figure 1-1 The cubic structure of ZnSe ---------------------------------------------------------- 21 Figure 1-2 The wurtzite structure of ZnO -------------------------------------------------------- 21 Figure 1-3 Color online. Atomic structure of a Cu AX center in ZnO ----------------------- 22 Figure 1-4 VLS synthesis of Si/SiGe segmented (superlattice) nanowires. (a) Scheme of the growth chamber and experimental setup. (b) Steps of the VLS process (c) STEM image of the Si/SiGe segments of the nanowire. (d) HRTEM image of the same nanowire with a SAED pattern ------------------------------------------- 23 Figure 1-5 Semiconductor, core/shell and heterostructure nanowires ----------------------- 24 Figure 1-6 (a) TEM elemental mapping of a single GaAs/GaP heterojunction nanowire. (b) Schematic of a modulation-doped InP nanowire LED. (c) Dark-field optical image of a single NiSi/Si nanowire superlattice heterostructure. (d) Ids-Vds curves of a NiSi/p-Si/NiSi heterojunction nanowire -FET fabricated p-Si nanowire -------------------------------------------------------------------------------- 25 Figure 1-7 Three types of transitions for photons absorbed in semiconductors ------------ 26 Chapter 2 Figure 2-1 Schematic of a top view of a typical MBE system -------------------------------- 38 Figure 2-2 Schematic of the basic evaporation process of II-VI compound semiconductors for MBE --------------------------------------------------------------------------------- 38 Figure 2-3 Schematic of a top view of a typical RF magnetron sputtering system -------- 39 Figure 2-4 Basic momentum exchange process of RF-sputtering ---------------------------- 39 Figure 2-5 Schematic diagram of an AFM system --------------------------------------------- 40 Figure 2-6 Basic setup and illustration of Hall effect ------------------------------------------ 40 Figure 2-7 (a) Schematic diagram showing Bragg diffraction from planes of atoms in a crystal, (b) show part of (a) in detail ------------------------------------------------ 41 Figure 2-8 Five of the most commonly observed PL transitions ----------------------------- 41 Figure 2-9 Apparatus of PL measurements system --------------------------------------------- 42 Figure 2-10 Schematic representation of the micro-Raman experimental apparatus ------ 42 Figure 2-11 Schematic of a top view of a typical FESEM system --------------------------- 43 Figure 2-12 Schematic illustration of I-V measurement system ------------------------------ 43 Chapter 3 Figure 3-1 (a), (b) and (c) top view FESEM images of the ZnSe NWs grown at 230°C, 280°C, 320°C. Inset shows an enlarged FESEM image -------------------------- 53 Figure 3-2 Average length and average diameter of the ZnSe nanowires ------------------- 53 Figure 3-3 HRTEM image taken from the edge portion of one single ZnSe nanowires prepared at (a) 280°C and (b) 320°C. Inset in figure 3(a) shows SAED image of the ZnSe nanowires prepared at 280°C --------------------------------------------- 54 Figure 3-4 (a), (b) EDX and XRD spectra of the ZnSe nanowires prepared at three different temperatures ---------------------------------------------------------------------------- 55 Figure 3-5 Room temperature Raman spectra of the ZnSe nanowires prepared at three different temperatures ----------------------------------------------------------------- 56 Figure 3-6 (a) 20K PL spectra measured from the three ZnSe nanowires samples. (b) shows an enlarged 20K PL spectrum of the ZnSe nanowires prepared at 320°C - -------------------------------------------------------------------------------------------- 57 Chapter 4 Figure 4-1 Schematic diagram of the sample used in this study ------------------------------ 65 Figure 4-2 (a) Cross-sectional and (b) top-view FE-SEM images of the ZnSe nanowires grown on oxidized Si substrate. Inset in (b) shows an enlarged FESEM image -------------------------------------------------------------------------------------------- 66 Figure 4-3 XRD spectrum of the as-grown ZnSe nanowires ---------------------------------- 67 Figure 4-4 HRTEM image taken from the edge portion of one single ZnSe nanowire. Inset shows SAED image of the ZnSe nanowires --------------------------------------- 67 Figure 4-5 EDX spectrum of the as-grown ZnSe nanowires ---------------------------------- 68 Figure 4-6 Temperature dependent PL spectra of the ZnSe nanowires ---------------------- 68 Figure 4-7 I-V characteristics of the fabricated ZnSe nanowire PD measured in dark ---- 69 Figure 4-8 Measured photo response as a function of time as we switched the illumination on and off ------------------------------------------------------------------------------- 69 Chapter 5 Figure 5-1 Schematic diagram of the fabricated Zn0.9Cd0.1Se nanowires PD --------------- 83 Figure 5-2 (a) Top-view FESEM image of our ZnCdSe nanowires. (b) HRTEM image taken from the edge portion of one individual Zn0.9Cd0.1Se nanowire. Inset shows SAED image of the nanowire ------------------------------------------------ 84 Figure 5-3 EDX spectrum of the as-grown Zn0.9Cd0.1Se nanowire --------------------------- 84 Figure 5-4 (a) STEM EDX image and (b) line-scanning spectra of one randomly selective ZnCdSe nanowire. (c) HAADF STEM image and EDX elemental mappings -------------------------------------------------------------------------------------------- 85 Figure 5-5 Measured XRD spectrum measured from the ternary Zn0.9Cd0.1Se nanowires -------------------------------------------------------------------------------------------- 86 Figure 5-6 Raman spectrum of the Zn0.9Cd0.1Se nanowires measured at room temperature -------------------------------------------------------------------------------------------- 86 Figure 5-7 PL spectrum of the ZnCdSe nanowires measured at 20K ------------------------ 87 Figure 5-8 I-V characteristics of the fabricated PD measured in dark and under illumination -------------------------------------------------------------------------------------------- 87 Figure 5-9 Measured photo response of the ZnCdSe nanowire PD as a function of time as we switched the UV illumination on and off --------------------------------------- 88 Figure 5-10 (a) Cross-sectional and (b) high-magnification top-view FESEM images of the ZnSe0.95Te0.05 nanotips grown on oxidized Si(100) substrate -------------------- 89 Figure 5-11 (a) Bright-field TEM image of a single ZnSe0.95Te0.05 nanotip. (b) HRTEM image of the edge portion of figure 2(a). ------------------------------------------- 90 Figure 5-12 (a) SAED pattern showing the cubic zinc-blende and hexagonal wurtzite structures and (b) schematic diagram of pole SAED figures of our ZnSe0.95Te0.05 nanotips --------------------------------------------------------------------------------- 91 Figure 5-13 EDX spectrum measured from the ZnSe0.95Te0.05 nanotips --------------------- 92 Figure 5-14 (a) Full XRD spectrum of the ZnSe0.95Te0.05 nanotips. Enlarged XRD spectra of (b) 26.5°-28.5°----------------------------------------------------------------------- 93 Figure 5-15 Enlarged XRD spectra of 44°-47°angular regions ------------------------------- 94 Figure 5-16 Raman spectrum of our ZnSe0.95Te0.05 nanotips measured at room temperature -------------------------------------------------------------------------------------------- 95 Figure 5-17 PL spectrum of the ZnSeTe nanotips measured at 20K. PL spectrum of the ZnSe nanowires was also plotted for comparison --------------------------------- 95 Figure 5-18 Schematic diagram of the fabricated ZnSe0.95Te0.05 nanotip PD --------------- 96 Figure 5-19 I-V characteristics of the fabricated ZnSe0.95Te0.05 nanotip PD measured in dark and under UV illumination ----------------------------------------------------- 97 Figure 5-20 Dynamic photo response of our ZnSe0.95Te0.05 nanotip PD as we switched the UV illumination on and off ----------------------------------------------------------- 97 Chapter 6 Figure 6-1 Schematic diagram of the fabricated nanotip PD -------------------------------- 109 Figure 6-2 (a) Cross-sectional and (b) top-view FESEM images of the quaternary ZnCdSeTe nanotips grown on oxidized Si substrate. Inset in (b) shows an enlarged top-view FESEM image -------------------------------------------------- 110 Figure 6-3 (a) Low-magnification BF TEM image of the quaternary ZnCdSeTe nanotips. (b), (c) high-magnification BF TEM images taken from the edge portion of two neighboring nanotips. Inset in (a) shows an enlarged image. Inset in (b) shows the corresponding SAED patterns. Inset in (c) shows the corresponding HRTEM images ---------------------------------------------------------------------- 111 Figure 6-4 EDX line-scanning of Zn, Cd, Se and Te. Inset shows a STEM image along the cross-section of a nanotip ----------------------------------------------------------- 112 Figure 6-5 EDX spectrum measured from our ZnCdSeTe nanotips ------------------------ 112 Figure 6-6 Angle annular dark field scanning TEM image and EDX elemental mapping of Zn, Cd, Se and Te -------------------------------------------------------------------- 113 Figure 6-7 XRD spectrum measured from the as-grown sample ---------------------------- 114 Figure 6-8 (a) Room-temperature Raman spectrum and (b) 20K PL spectrum of our ZnCdSeTe nanotips ------------------------------------------------------------------ 115 Figure 6-9 Dark and photo I-V characteristics of the fabricated ZnCdSeTe nanotip photodetector ------------------------------------------------------------------------- 116 Figure 6-10 Measured photo response as a function of time as we switched the UV illumination on and off -------------------------------------------------------------- 116 Chapter 7 Figure 7-1 (a)-(d) schematic diagrams of the VLS growth procedures. (e) shows energy band diagram of our ZnSe/ZnCdSe heterostructure nanowires ---------------- 133 Figure 7-2 Top-view FESEM images of the ZnSe/ZnCdSe heterostructure nanowires with Lw = (a) 6, (b) 12, (c) 18 and (d) 24 nm ------------------------------------------ 133 Figure 7-3 HRTEM images of the ZnSe/Zn0.98Cd0.02Se heterostructure nanowires with (a) Lw = 6 nm and (c) Lw = 24 nm. SAED patterns observed from the nanowires with (b) Lw = 6 nm and (d) Lw = 24 nm. (e) shows a schematic diagram of their pole SAED figure -------------------------------------------------------------------- 134 Figure 7-4 (a) and (b) a one-dimensionally integrated profile of the line area in figure 3(a) and (c) red line. (c), (d) and (e) show EDX spectra measured from our ZnSe/ZnCdSe heterostructure nanowires with Lw = 24 nm -------------------- 135 Figure 7-5 XRD spectra measured from the four samples ----------------------------------- 137 Figure 7-6 (a) PL spectra of our ZnSe, ZnCdSe and ZnSe/ZnCdSe heterostructure nanowires measured at 20K was also plotted for comparison. (b) Normalized PL spectra of the ZnSe/ZnCdSe heterostructure nanowires measured at 20K - ------------------------------------------------------------------------------------------- 137 Figure 7-7 Arrhenius plots of the integrated PL intensities measured from the ZnSe/ZnCdSe nanowires ------------------------------------------------------------ 138 Figure 7-8 Schematic diagrams of (a) the VLS growth of ZnSe/ZnSeTe superlattice nanotips and (b) the ZnSe/ZnSeTe superlattice nanotips grown on oxidized Si (100) substrate ------------------------------------------------------------------------ 139 Figure 7-9 Top-view FESEM images of the ZnSe/ZnSeTe superlattice nanotips with Lw = (a) 16 nm, (b) 20 nm and (c) 24 nm, respectively ------------------------------- 140 Figure 7-10 HRTEM image of one randomly selected ZnSe/ZnSeTe superlattice nanotip with Lw = 20 nm. Insets at the bottom show FFT patterns measured from four different points in this particular superlattice nanotip and low-magnification BF TEM image --------------------------------------------------------------------------- 141 Figure 7-11 XRD spectra measured from the three ZnSe/ZnSeTe superlattice nanotips- 142 Figure 7-12 (a) PL spectrum of the ZnSe/ZnSeTe superlattice nanotips measured at 20K. PL spectra of ZnSe nanowires and ZnSeTe nanotip were also plotted for comparison. (b) Normalized PL spectra of the three ZnSe/ZnSeTe superlattice nanotips measured at 20K ----------------------------------------------------------- 143 Figure 7-13 Arrhenius plots of the integrated PL intensities measured from the ZnSe/ZnSeTe superlattice nanotips with Lw = (a) 16 nm, (b) 20 nm and (c) 24 nm -------------------------------------------------------------------------------------- 144 Figure 7-14 Schematic diagrams of the VLS growth procedure and the energy band diagram of our ZnSe/ZnCdSeTe superlattice nanotips -------------------------- 145 Figure 7-15 Top-view FESEM images of the ZnSe/ZnCdSeTe superlattice nanotips with Lw = (a) 12 nm, (b) 16 nm, (c) 20 nm and (d) 24 nm --------------------------- 146 Figure 7-16 HRTEM image of one randomly selected ZnSe/ZnCdSeTe superlattice nanotip with Lw = 24 nm. Insets show FFT patterns measured from three different points in this particular superlattice nanotip -------------------------------------- 147 Figure 7-17 XRD spectra measured from the four ZnSe/ZnCdSeTe superlattice nanotips ------------------------------------------------------------------------------------------- 148 Figure 7-18 PL spectra of the four ZnSe/ZnCdSeTe superlattice nanotips measured at 20K ------------------------------------------------------------------------------------------- 148 Figure 7-19 Arrhenius plots of the integrated PL intensities measured from the ZnSe/ZnCdSeTe superlattice nanotips with Lw = (a) 12 nm, (b) 16 nm, (c) 20 nm and (d) 24 nm -------------------------------------------------------------------- 149 Chapter 8 Figure 8-1 Schematic diagram of the fabricated Cu-ZnO thin films photodetector ------ 175 Figure 8-2 Top-view FESEM images of Cu-ZnO thin films, (a) as-deposited, (b) annealed at 500◦C, (c) 600◦C, (d) 700◦C, (e) 800◦C and (f) 900◦C in vacuum. Inset shows a cross-section FESEM image ------------------------------------------------------ 176 Figure 8-3 AFM images of Cu-ZnO thin films, (a) as-deposited, (b) annealed at 500◦C, (c) 600◦C, (d) 700◦C, (e) 800◦C and (f) 900◦C in vacuum --------------------------- 177 Figure 8-4 (a) XRD spectra of Cu-ZnO films and annealed at 500◦C to 900◦C. (b) Enlarged XRD spectra of 33.5-35.5° angular regions -------------------------------------- 178 Figure 8-5 XPS spectra of Cu-ZnO thin films for (a) survey, (b) Zn2p core level spectrum ------------------------------------------------------------------------------------------- 179 Figure 8-6 XPS spectra of Cu-ZnO thin films for (a) O1s and (b) Cu2p core level spectrum ------------------------------------------------------------------------------------------- 180 Figure 8-7 Raman spectra of Cu-ZnO thin films annealed at different temperatures ---- 181 Figure 8-8 Optical transmittance spectra of Cu-ZnO thin films annealed at different temperatures -------------------------------------------------------------------------- 181 Figure 8-9 PL spectra of Cu-ZnO thin films annealed at different temperatures --------- 182 Figure 8-10 The effect of annealing temperature on the carrier concentration and resistivity of the Cu-ZnO thin films ------------------------------------------------------------ 183 Figure 8-11 Temperature dependent properties for carrier concentration of the Cu-ZnO thin films ------------------------------------------------------------------------------------ 183 Figure 8-12 I-V characteristics of the fabricated Cu-ZnO thin film PD measured in dark and under UV illumination ---------------------------------------------------------- 184 Figure 8-13 Dynamic photo response of our Cu-ZnO thin film PD as we switched the UV illumination on and off -------------------------------------------------------------- 184 Figure 8-14 Top-view FESEM images of Cu-ZnO thin films, (a) as-deposited, (b) annealed at 500◦C, (c) 600◦C, (d) 700◦C, (e) 800◦C and (f) 900◦C in vacuum. Inset shows a cross-section FESEM image ------------------------------------------------------ 185 Figure 8-15 AFM images of Cu-ZnO thin films, (a) as-deposited, (b) annealed at 500◦C, (c) 600◦C, (d) 700◦C, (e) 800◦C and (f) 900◦C in vacuum --------------------------- 186 Figure 8-16 (a) XRD spectra of Cu-ZnO films and annealed at 500◦C to 900 ◦C. (b) Enlarged XRD spectra of 33.5-35.5° angular regions --------------------------- 187 Figure 8-17 XPS spectra of Cu-ZnO thin films (a) survey, (b) Zn2p core level spectrum ------------------------------------------------------------------------------------------- 188 Figure 8-18 XPS spectra of Cu-ZnO thin films (a) O1s and (b) Cu2p core level spectrum ------------------------------------------------------------------------------------------- 188 Figure 8-19 Raman spectra of Cu-ZnO thin films annealed at different temperature ---- 190 Figure 8-20 Optical transmittance spectra of Cu-ZnO thin films annealed at different temperatures -------------------------------------------------------------------------- 190 Figure 8-21 PL spectra of Cu-ZnO thin films annealed at different temperatures -------- 191

    CH1
    [1] S. J. Chang, Y. K. Su, W. R. Chen, W. H. Lan, W. J. Lin, Y. T. Cheng, C. H. Liu and U. H. Liaw, IEEE Photon Technol. Lett. 14, 180 (2002)
    [2] Clement Yuen, S. F. Yu, Eunice S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen and H. H. Hng, Appl. Phys. Lett. 86, 031112 (2005)
    [3] M. Lin and H. K. Kim, Appl. Phys. Lett. 84, 12 (20054)
    [4] H. Okuyama, IEICE Trans. Electron. E83C, 536 (2000)
    [5] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, Science 287, 1471 (2000)
    [6] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, Nature 415, 617 (2002)
    [7] T. W. Zhang, Y. Q. Shen, W. Hu, J. Sun, J. Wu, Z. F. Ying and N. Xu, J. Vacuum Sci. Technol. 25, 1823 (2007)
    [8] X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li and S. K. Hark, Appl. Phys. Lett. 83, 5533 (2003)
    [9] B. Xiang, H. Z. Zhang, G. H. Li, F. H. Yang, F. H. Su, R. M. Wang, J. Xu, G. W. Lu, X. C. Sun, Q. Zhao and D. P. Yu, Appl. Phys. Lett. 82, 3330 (2003)
    [10] T. Aichele, A. Tribu, C. Bougerol, K. Kheng, R. Andre and S. Tatarenko, Appl. Phys. Lett. 93, 143106 (2008)
    [11] J. Basu, R. Divakar, J. Nowak, S. Hofmann, A. Colli, A. Franciosi and C. B. Carter, J. Appl. Phys. Lett. 104, 064302 (2008)
    [12] Guozhen Shen, P. C. Chen, Koungmin Ryu and Chongwu Zhou, J. Mater. Chem. 19, 828 (2009)
    [13] B. M. Ataev, Y. I. Alivov, V. A. Nikitenko, M. V. Chukichev, V. V. Mamedov and S. S. Makhmudov, J. Optoelectron. Adv. Mater. 5, 899 (2003)
    [14] M. J. Liu and H. K. Kim, Appl. Phys. Lett. 84, 173 (2004)
    [15] S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. R. Lin, I. C. Chen and B. R. Huang, Nanotechnology 19, 095505 (2008)
    [16] R. C. Neville and C. A. Mead, J. Appl. Phys. 41, 3795 (1970)
    [17] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys. 84, 3912 (1998)
    [18] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, J. Vac. Sci. Technol. B. 22, 932 (2004)
    [19] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, J. Appl. Phys. 98, 041301 (2005)
    [20] D. C. Look, J. W. Hemsky and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)
    [21] B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 71, 301 (2000)
    [22] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K.Meyer, S. B. Orlinskii, J. Schmidt and P. G. Baranov, Phys. Rev. Lett. 88, 045504 (2002)
    [23] C. G. Vande Walle, Phys. Status Solidi B, 229, 221 (2002)
    [24] S. F. J. Cox, E. A. Davis, P. J. C. King, J. M. Gil, H. V. Alberto, R. C. Vilao, J. Piroto Duarte, N. A. De Campos and R. L. Lichti, J. Phys.-Condens. Matter, 13, 9001 (2001)
    [25] C. G. Vande Walle, Phys. Rev. Lett. 85, 1012 (2000)
    [26] J. Gutowski, N. Presser and I. Broser, Phys. Rev. B. 38, 9746 (1988)
    [27] S. Bethke, H. Pan and B. W. Wessels, Appl. Phys. Lett. 52, 138 (1988)
    [28] B. J. Jin, S. Im and S. Y. Lee, Thin Solid Films. 366, 107 (2000)
    [29] E. G. Bylander, J. Appl. Phys. 49, 1188 (1978)
    [30] N. Riehl and O. Ortman, Z. Elektrochem., 60, 149 (1952)
    [31] F. A. Kroger and H. J. Vink, J. Chem. Phys. 22, 250 (1954)
    [32] I. Y. Prosanov and A. A. Politov, Inorg. Mater. 31, 663 (1995)
    [33] N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton and G. Cantwell, Appl. Phys. Lett. 81, 622 (2002)
    [34] H. J. Egelhaaf and D. Oelkrug, J. Cryst. Growth 161, 190 (1996)
    [35] D. Hahn and R. Nink, Phys. Kondens. Mater. 3, 311 (1965)
    [36] M. Liu, A. H. Kitai and P. Mascher, J. Lumines. 54, 35 (1992)
    [37] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga and A. Shimizu, Jpn. J. Appl. Phys. 36, 1453 (1997)
    [38] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)
    [39] K.-K. Kim, H.-S. Kim, D.-K. Kwang, J.-H. Lim and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003)
    [40] Y. R. Ryu, T. S. Lee and H. W. White, Appl. Phys. Lett. 83, 87 (2003)
    [41] H.-H. Bang, D.-K. Hwang, M.-C. Park, Y.-D. Ko, I. Yun and J.-M. Myoung, Appl. Surf. Sci. 210, 177 (2003)
    [42] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu and L. D. Chen, Appl. Phys. Lett. 84, 541 (2004)
    [43] L. J. Guo, Y. Z. Zhen, W. Lei, Z. B. Hui and H. J. Yun, Chin. Phys. Lett. 19, 1494 (2004)
    [44] S. B. Zhang, S. H. Wei and A. Zunger, Phys. Rev. B 63, 075205 (2001)
    [45] C. G. Vande Walle, Phys. Rev. Lett. 85, 1012 (2000)
    [46] E.-C. Lee, Y.-S. Kim, Y.-G. Jin and K. J. Chang, Phys. Rev. B 64, 085120 (2001)
    [47] D. C. Look, R. L. Jones, J. R. Sizelove, B. Y. Garces, N. C. Giles and L. E. Halliburton, Phys. Status Solidi A 195, 171 (2003)
    [48] S. Yamauchi, Y. Goto and T. Hariu, J. Cryst. Growth 260, 1 (2004)
    [49] K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. Part 2 39, L555 (2000)
    [50] P. Fons, A. Yamada, K. Iwata, K. Matsubara, S. Niki, K. Nakahara and H. Takasul, Nucl. Instrum. Methods Phys. Res. B 199, 190 (2003)
    [51] Yanfa Yan, M. M. Al-Jassim and S. H. Wei, Appl. Phys. Lett. 89, 181912 (2006)
    [52] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater. 15, 353 (2003)
    [53] L. J. Lauhon, M. S. Gudiksen, C. M. Lieber and Philos. Trans. R. Soc. London Ser. A 362, 1247 (2004)
    [54] M. Law, J. Goldberge, P. Yang and Annu. Rev. Mater. Res. 34, 83 (2004)
    [55] C. N. R. Rao, F. L. Deepak, G. Gundiah and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
    [56] L. Samuelson, Mater. Res. Materials Today 6, 22 (2003)
    [57] N. D. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov and U. Gcsele, J. Cryst. Growth 290, 6 (2006)
    [58] Y. Wu, R. Fan and P. Yang, Nano Lett. 2, 83 (2002)
    [59] Yat Li, Fang Qian, Jie Xiang and Charles M. Lieber, Materials today 9, 18 (2006)
    [60] A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
    [61] A. P. Levitt, Whisker Technology, Wiley, New York (1970)
    [62] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
    [63] X. F. Duan and C. M. Lieber, Adv. Mater. 12, 298 (2000)
    [64] Y. Cui, J. Phys. Chem. B 104, 5213(2000)
    [65] X. F. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000)
    [66] X. F. Duan, Appl. Phys. Lett. 76, 1116 (2000)
    [67] M. Gudiksen and C. M. Lieber, J. Am. Chem. Soc. 122, 8801 (2000)
    [68] J. Wang, Science 293, 1455 (2001)
    [69] X. F. Duan, Nature 409, 66 (2001)
    [70] M. Gudiksen, J. Phys. Chem. B 105, 4062 (2001)
    [71] Y. Huang, X. F. Duan, Y. Cui and C. M. Lieber, Nano Lett. 2, 101 (2002)
    [72] Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang and Lieber CM, Nano Lett. 3, 149 (2003)
    [73] Z. H. Zhong, F. Qian, D. L. Wang and C. M. Lieber, Nano Lett. 3, 343 (2003)
    [74] C. J. Barrelet, Y. Wu, D. C. Bell and C. M. Lieber, J. Am. Chem. Soc. 125, 11498 (2003)
    [75] A. B. Greytak, L. J. Lauhon, M. S. Gudiksen and C. M. Lieber, Appl. Phys. Lett. 84, 4176 (2004)
    [76] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell and C. M. Lieber, Nano Lett. 4, 433 (2004)
    [77] G. Zheng, Adv. Mater. 16, 1890 (2004)
    [78] P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian and C. M. Lieber, Nano Lett. 5, 1407 (2005)
    [79] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, Nature 415, 617 (2002)
    [80] Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber, Nature 430, 61 (2004)
    [81] C. Yang, Z. H. Zhong and C. M. Lieber, Science 310, 1304 (2005)
    [82] L. J. Lauhon, M. S. Gudiksen, C. L. Wang and C. M. Lieber, Nature 420, 57 (2002)
    [83] F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet and C. M. Lieber, Nano Lett. 4, 1975 (2004)
    [84] F. Qian, S. Gradecak, Y. Li, C. Y. Wen and C. M. Lieber, Nano Lett. 5, 2287 (2005)
    [85] O. Hayden, A. B. Greytak and D. C. Bell, Adv. Mater. 17, 701 (2005)
    [86] W. Lu, Proc. Natl. Acad. Sci. USA 102, 10046 (2005)
    [87] J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan and C. M. Lieber, Nature 441, 489 (2006)
    [88] Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, H. Yan, D. A. Blom and C. M. Lieber, Nano Lett. 6, 1468 (2006)
    CH2
    [1] E. H. Parker, The Technology and Physics of Molercular Beam Epitaxy, (1985) 15
    [2] V. Swaminathan and A. T. Macrander, Prentice-Hall, New Jersey, (1991) 138
    [3] Sidney Perkowitz, Academic Press New York, (1993) 50
    [4] A. Madhukar, Surf. Sci. 132, 344 (1983)
    [5] R. K. Watts, Vossen and W. Kern, Academic, New York, (1978) 131-174
    [6] C. Y. Chang and S. M. Sze, ULSI technology, 380
    [7] J. L. Vossen, J. J. Cuomo, Thin Film Processes, (1978) 24
    [8] S. I. Shah, Handbook of Thin Film Process Technology P.A 3.0.1
    [9] S. M. Sze , VLSI Technology, 387
    [10] P. Ruterana, M. Albrecht and J. Neugebauer, Nitride Semiconductors : handbook on materials and devices, Wiley-VCH, (2003).
    [11] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, Appl. Phys. Lett., 68, 643 (1996)
    [12] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim and A. Yoshikawa, Appl. Phys. Lett., 77, 2557 (2000)
    [13] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and D. J. Smith, Appl. Phys. Lett., 86, 043108 (2005)
    [14] Dieter K. Schroder, John Wiley & Sons Inc 490, (1990)
    [15] M series Spectrometers, SPEX Inc, (1996)
    [16] J. M. Chalmers and G. Dent, The Royal Socienty of Chemistry, Cambridge, (1997)
    [17] G. Turrel and P. Dhamelincourt, John Wiley & Sons, Chichester, (1996)
    CH3
    [1] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, IEEE Tran. Nanotechnol. 4, 649 (2005)
    [2] X. F. Duan and C. M. Lieber, Adv. Mater. 12, 298 (2000)
    [3] Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291 (2001) 1947.
    [4] S. J. Chang, T. J. Hsueh, I. C. Chen and B. R. Huang, Nanotechnol. 19, 175502 (2008)
    [5] Z. Fan and J. G. Lua, Appl. Phys. Lett. 86, 123510 (2005)
    [6] C. Y. Lu, S. J. Chang, S. P. Chang, C. T. Lee, C. F. Kuo, H. M. Chang Y. Z Chiou, C. L. Hsu and I. C. Chen, Appl. Phys. Lett. 89, 153101 (2006)
    [7] A. B. Panda, S. Acharya, S. Efrima and Yuval Golan, Langmuir 23, 765 (2007)
    [8] Y. Ohno, T. Shirahama, S. Takeda, A. Ishizumi and Y. Kanemitsu, Appl. Phys. Lett. 87, 043105 (2005)
    [9] A. Colli, S. Hofmann, A. C. Ferrari, C. Ducati, F. Martelli, S. Rubini, S. Cabrini and A. Franciosi and J. Robertson, Appl. Phys. Lett. 86, 153103 (2005)
    [10] Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang and N. Wang, Appl. Phys. Lett. 83, 2665 (2005)
    [11] D. B. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, J. F. Schetzina, G. Cantwell and W. C. Harsch, Appl. Phys. Lett. 66, 115 (1995)
    [12] S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi and M. Ikeda, Electron. Lett. 32, 552 (1996)
    [13] H. Ishikura, N. Fukuda, M. Itoi, K. Yasumoto, T. Abe, H. Kasada and K. Ando, J. Crystal Growth 214, 1130 (2000)
    [14] B. Xiang, H. Z. Zhang, G. H. Li, F. H. Yang, F. H. Su, R. M. Wang, J. Xu, G. W. Lu, X. C. Sun, Q. Zhao and D. P. Yu, Appl. Phys. Lett. 82, 3330 (2003)
    [15] X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li and S. K. Hark, Appl. Phys. Lett. 84 , 2641 (2004)
    [16] Y. C. Zhu and Y. Bando, Chem. Phys. Lett. 377, 367 (2003)
    [17] J. Basu, R. Divakar, J. Nowak, S. Hofmann, A. Colli, A. Franciosi and C. B. Carter, J. Appl. Phys. 104, 064302 (2008)
    [18]Y. C. Zhu and Y. Bando, Chem. Phys. Lett. 377, 367 (2003)
    [19] M. Paulose, O. K. Varghese and C. A. Grimes, J. Nanoscience Nanotechnol. 3, 341 (2003)
    [20] T. Aichele, A. Tribu, C. Bougerol, K. Kheng, R. Andre and S. Tatarenko, Appl. Phys. Lett. 93 , 143106 (2008)
    [21] S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski, and J. Robertson, J. Appl. Phys., 94, 6005 (2003)
    [22] T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin and I. C. Chen, J. Electrochem. Soc. 154, J393 (2007)
    [23] M. Tchernycheva, G. E. Cirlin, G. Patriarche, L. Travers, Zwiller V, U. Perinetti and J. C. Harmand, Nano Lett. 7, 1500 (2007)
    [24] Y. Cai, T. L. Wong, S. K. Chan, I. K. Sou, D. S. Su, and N. Wang, Appl. Phys. Lett. 93, 233107 (2008)
    [25] L. E. Froberg, W. Seifert and J. Johansson, Phys. Rev. B 76, 15340 (2007)
    [26] D. H. Mosca, M. Abbate, W. H. Schreiner, V. H. Etgens and M. Eddrief, J. Appl. Phys. 90, 5973 (2001)
    [27] S. L. Xiong, J. M. Shen, Q. Xie, Y. Q. Gao, Q. Tang and Y. T. Qian, Adv. Mater. 15, 1787 (2005)
    [28] L. Shi, Y. M. Xu and Q. Li, Nanotechnol. 16, 2100 (2005)
    [29] U. Philipose, A. Saxena, H. E. Ruda, P. J. Simpson, Y. Q. Wang, and K. L. Kavanagh, Nanotechnology 19, 215715 (2008)
    [30] F. F. Wang, Z. H. Zhang, R. B. Liu, X. Wang, X. Zhu, A. L. Pan and B. S. Zou, Nanotechnol. 18, 305705 (2007)
    [31] T. J. Mountaiaris, J. D. Peck, S. Stoltz, W. Y. Yu, A. Petrou and P. G. Mattocks, Appl. Phys. Lett. 68, 2270 (1996)
    [32] B. Schreder, A. Materny, W. Kiefer, G. Bacher, A. Forchel and G. Landwehr, J. Raman Spectrosc. 31, 959 (2000)
    [33] D. Sarigannis, J. D. Peck, G. Kioseogiou, A. Petrou and T. J. Mountaiaris, Appl. Phys. Lett. 80, 4024 (2002)
    CH4
    [1] H. C. Lee, T. Abe, N. Kaneko, M. Adachi, M. Watanabe, Y. Fujita, H. Kasada and K. Ando, Jpn. J. Appl. Phys. 41, 1359 (2002)
    [2] S. Ito, K. Nakano and A. Ishibashi, J. Crystal Growth 214, 1029 (2000)
    [3] W. R. Chen, S. J. Chang, Y. K. Su, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, C. H. Liu and U. H. Liaw, IEEE Photon. Technol. Lett. 14, 1061 (2002)
    [4] K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, M. Irikusa, T. Takebe, S. Nishine and T. Shirakawa, J. Crystal Growth 214, 1064 (2000)
    [5] H. Okuyama, IEICE Trans. Electron. E83C, 536 (2000)
    [6] S. J. Chang, Y. K. Su, W. R. Chen, W. H. Lan, W. J. Lin, Y. T. Cheng, C. H. Liu, and U. H. Liaw, IEEE Photon Technol. Lett. 14, 180 (2002)
    [7] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, Science 287, 1471 (2000)
    [8] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, Nature 415, 617 (2002)
    [9] T. W. Zhang, Y. Q. Shen, W. Hu, J. Sun, J. Wu, Z. F. Ying and N. Xu, J. Vacuum Sci. Technol. 25, 1823 (2007)
    [10] X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li and S. K. Hark, Appl. Phys. Lett. 83, 5533 (2003)
    [11] B. Xiang, H. Z. Zhang, G. H. Li, F. H. Yang, F. H. Su, R. M. Wang, J. Xu, G. W. Lu, X. C. Sun, Q. Zhao and D. P. Yu, Appl. Phys. Lett. 82, 3330 (2003)
    [12] T. Aichele, A. Tribu, C. Bougerol, K. Kheng, R. Andre and S. Tatarenko, Appl. Phys. Lett. 93, 143106 (2008)
    [13] J. Basu, R. Divakar, J. Nowak, S. Hofmann, A. Colli, A. Franciosi and C. B. Carter, J. Appl. Phys. Lett. 104, 064302 (2008)
    [14] S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski and J. Robertson, J. Appl. Phys. 94, 6005 (2003)
    [15] F. F. Wang, Z. H. Zhang, R. B. Liu, X Wang, X Zhu, A. L. Pan and B. S. Zou, Nanotechnology 18, 305705 (2007)
    [16] H. Z. Fu, H. Y. Li, W. Q. Jie and L. Yang, J. Crystal Growth 289, 440 (2006)
    [17] L. E. Greene, M. Law, J Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally and P. D. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003)
    [18] C. F. Guo, C. H. Choy, D. X. Huang, Y. P. Fang, J. Phys. Chem. Solids 67, 818 (2006)
    [19] Jacques I. Pankove, Dover Publication, Inc. New York (1975)
    [20] Y. P. Varshni, Physica 34, 149 (1967)
    [21] X. T. Zhang, K. N. Ip, Q. Li and S. K. Hark, Appl. Phys. Lett. 86, 203114 (2005)
    [22] H. Hong and W. A. Anderson, IEEE Tran. Electron. Dev. 46, 1127 (1999)
    [23] C. L. Hsu, S, J, Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu and I. C. Chen, Chem. Phys. Lett. 416, 75 (2005)
    [24] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K. Wang, C. M. Chang and B. R. Huang, IEEE Tran. Electron. Dev. 52, 121 (2005)
    CH5
    [1] R. Venugopal, P. I. Lin and Y. T. Chen, J. Phys. Chem. B 110, 11691 (2006)
    [2] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, Nature 415, 617 (2002)
    [3] R. G. Alonso, E. K. Suh, A. K Ramdas, N. Samarth, H. Luo and J. K. Furdyna, Phys. Rev. B, 40, 3720 (1989)
    [4] D. B. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, J. F. Schetzina, G. Cantwell and W. C. Harsch, Appl. Phys. Lett. 66, 1995 (1995)
    [5] H. C. Lee, T. Abe, M. Watanabe, Z. M. Aung, M. Adachi, T. Shirai, H.Yamada, S. Kuroda, H. Kasada and K. Ando, J. Crystal Growth 214/215, 1096 (2000)
    [6] W. R. Chen, S. J. Chang, Y. K. Su, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, C.H. Liu and U. H. Liaw, IEEE Photon. Technol. Lett. 14, 1061 (2002)
    [7] S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi and M. Ikeda, Electron. Lett. 32, 552 (1996)
    [8] E. Kato, H. Noguchi, M. Nagai, H. Okuyama, S. Kijima and A. Ishibashi, Electron. Lett. 34, 282 (1998)
    [9] S. J. Chang, Y. K. Su, W. R. Chen, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, C.H. Liu and U. H. Liaw, IEEE Photon. Technol. Lett. 14, 188 (2002)
    [10] F. Hiei, M. Ikeda, M. Ozawa, T. Miyajima, A. Ishibashi and K. Akimoto, Electron. Lett. 29, 878 (1993)
    [11] C. S. Yang, D. Y. Hong, C. Y. Lin, W. C. Chou, C. S. Ro, W. Y. Uen, W. H. Lan and S. L. Tu, J. Appl. Phys. 83, 2555 (1998)
    [12] M. Kishino, S. Tanaka, K. Senda, Y. Yamada and T. Taguchi, J. Crystal Growth 214/215, 220 (2000)
    [13] S. K. Chang, C. D. Lee, H. L. Park and C. H. Chung, J. Crystal Growth 117, 793 (1992)
    [14] T. Yao, M. Kato, J. J. Davies and H. Tanino, J. Crystal Growth 86, 552 (1988)
    [15] S. Permogorov, A. Reznitsky, A. Naumov, H. Stolz and W. von der Osyten, J. Phys. (Condens. Matter) 1, 5125 (1989)
    [16] T. W. Zhang, Y. Q. Shen, W. Hu, J. Sun, J. Wu, Z. F. Ying and N. Xu, J. Vac. Sci. Technol. 25, 1823 (2007)
    [17] X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li and S. K. Hark, Appl. Phys. Lett. 83, 5533 (2003)
    [18] B. Xiang, H. Z. Zhang, G. H. Li, F. H. Yang, F. H. Su, R. M. Wang, J. Xu, G. W. Lu, X. C. Sun, Q. Zhao and D. P. Yu, Appl. Phys. Lett. 82, 3330 (2003)
    [19] A. Colli, S. Hofmann, C. Ferrari, F. Ducati, S. Martelli, S. Rubini, S. Cabrini, A. Franciosi and J. Robertson, Appl. Phys. Lett. 86, 153103 (2005)
    [20] C. H. Hsiao, S. J. Chang, S. B. Wang, S. P. Chang, T. C. Li, W. J. Lin, C. H. Ko, T. M. Kuan and B. R. Huang, J. Electrochem. Soc. 156, J73 (2009)
    [21] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
    [22] D. B. Mitzi, Inorg. Chem. 44, 7078 (2005)
    [23] H. F. Swanson, R. K. Fuyat and G. M. Ugrinic, Natl. Bur. Stand. (U.S.), Circ. 539 3, 23 (1954)
    [24] Y. Guo, B. Geng, L. Zhang, F. Zhan and J. You, J. Phys. Chem. C. 112, 20307 (2008)
    [25] C. S. Yang, W. C. Chou, D. M. Chen, C. S. Lo, J. L. Shen and T. R. Yang, Phys. Rev. B 59, 8128 (1999)
    [26] S. Larach, R. E. Shrader and C. F. Stocker, Phys. Rev. 108, 587 (1957)
    CH6
    [1] D. B. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, J. F. Schetzina, G. Cantwell and W. C. Harsch, Appl. Phys. Lett. 66, 115 (1995)
    [2] S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi and M. Ikeda, Electron. Lett. 32, 552 (1996)
    [3] H. Ishikura, N. Fukuda, M. Itoi, K. Yasumoto, T. Abe, H. Kasada and K. Ando, J. Crystal Growth 214, 1130 (2000)
    [4] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, Nano. Lett. 7, 1003 (2007)
    [5] C. H. Hsiao, S. J. Chang, S. B. Wang, S. P. Chang, T. C. Li, W. J. Lin, C. H. Ko, T. M. Kuan and B. R. Huang, J. Electrochem. Soc. 156, J73 (2009)
    [6] J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi and D. Golberg, Nano Lett. 8, 2794 (2008)
    [7] A. Colli, S. Hofmann, A. C. Ferrari, F. Martelli, S. Rubini, C. Ducati, A. Franciosi and J. Robertson, Nanotechnol. 16, S139 (2005)
    [8] M. J. S. P. Brasil, M. C. Tamargo, R. E. Nahory, H. L. Gilchrist and R. J. Martin, Appl. Phys. Lett. 59, 1206 (1991)
    [9] C. D. Lee, H. L. Park, C. H. Chung and S. K. Chang, Phys. Rev. B 45, 4491 (1992)
    [10] D. Lee, A. Mysyrowicz, A. V. Nurmikko and B. J. Fitzpatrick, Phys. Rev. Lett. 58, 1475 (1987)
    [11] T. Yao, M. Kato, J. J. Davies and H. Tanino, J. Crystal Growth 86, 552 (1988)
    [12] F. Hiei, M. Ikeda, M. Ozawa, T. Miyajima, A. Iskibashi and K. Akimoto, Electron. Lett. 29, 878 (1993)
    [13] C. S. Yang, D. Y. Hong, C. Y. Lin, W. C. Chou, C. S. Ro, W. Y. Uen, W. H. Lan and S. L. Tu, J. Appl. Phys. 83, 2555 (1998)
    [14] M. Kishino, S. Tanaka, K. Senda, Y. Yamada and T. Taguchi, J. Crystal Growth 214/215, 220 (2000)
    [15] S. K. Chang, C. D. Lee, H. L. Park and C. H. Chung, J. Crystal Growth 117, 793 (2002)
    [16] T. Yao, M. Kato, J. J. Davies and H. Tanino, J. Crystal Growth 86, 552 (1988)
    [17] S. Permogorov, A. Reznitsky, A. Naumov, H. Stolz and W. vonder Osyten, J. Phys. 1, 5125 (1989)
    [18] M. Paulose, O. K. Varghese and C. A. Grimes, J. Nanoscience Nanotechnol. 3, 341 (2003)
    [19] J. Basu, R. Divakar, J. Nowak, S. Hofmann, A. Colli, A. Franciosi and C. B. Carter, J. Appl. Phys. 104, 064302 (2008)
    [20] Y. Miyamoto and M. Hirata, Jpn. J. Appl. Phys. 14, 1419 (1975)
    [21] Y. Cai, T. L. Wong, S. K. Chan, I. K. Sou, D. S. Su and N. Wang, Appl. Phys. Lett. 93, 233107 (2008)
    [22] T. Aichele, A. Tribu, C. Bougerol, K. Kheng, R. André and S. Tatarenko, Appl. Phys. Lett. 93, 143106 (2008)
    [23] E. Janik, P. Dluzewski, S. Kret, A. Presz, H. Kirmse, W. Neumann, W. Zaleszczyk, L. T. Baczewski, A. Petroutchik, E. Dynowska, J. Sadowski, W. Caliebe, G. Karczewski and T. Wojtowicz, Nanotechnol. 18, 475606 (2007)
    [24] D. M. Cornet, V. G. M. Mazzetti, and R. R. LaPierre, Appl. Phys. Lett. 90, 013116 (2007)
    [25] T. Hara, T. Yoshida, T. Tanabe and T. Ii, J. J. Appl. Phys. 39, 4427 (2000)
    [26] F. F. Wang, Z. H. Zhang, R. B. Liu, X. Wang, X. Zhu, A. L. Pan and B. S. Zou, Nanotechnol. 18, 305705 (2007)
    [27] B. Schreder, A. Materny, W. Kiefer, G. Bacher, A. Forchel and G. Landwehr, J. Raman Spectrosc. 31, 959 (2000)
    [28] D. Sarigiannis, J. D. Peck, G. Kioseogiou, A. Petrou and T. J. Mountaiaris, Appl. Phys. Lett. 80, 4024 (2002)
    [29] X. B. Zhang, K. L. Ha and S. K. Hark, Appl. Phys. Lett. 79 1127 (2001)
    CH7
    [1] D. B. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, J. F. Schetzina, G. Cantwell and W. C. Harsch, Appl. Phys. Lett. 66, 115 (1995)
    [2] S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi and M. Ikeda, Electron. Lett. 32, 552 (1996)
    [3] H. Ishikura, N. Fukuda, M. Itoi, K. Yasumoto, T. Abe, H. Kasada and K. Ando, J. Crystal Growth 214, 1130 (2000)
    [4] B. Xiang, H. Z. Zhang, G. H. Li, F. H. Yang, F. H. Su, R. M. Wang, J. Xu, G. W. Lu, X. C. Sun, Q. Zhao and D. P. Yu, Appl. Phys. Lett. 82, 3330 (2003)
    [5] X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li and S. K. Hark, Appl. Phys. Lett. 84, 2641 (2004)
    [6] A. Colli, S. Hofmann, A. C. Ferrari, C. Ducati, F. Martelli, S. Rubini, S. Cabrini and A. Franciosi and J. Robertson, Appl. Phys. Lett. 86, 153103 (2005)
    [7] Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang and N. Wang, Appl. Phys. Lett. 83, 2665 (2005)
    [8] Y. C. Zhu and Y. Bando, Chem. Phys. Lett. 377, 367 (2003)
    [9] J. L. Zhao and X. M. Lib, Appl. Phys. Lett. 90, 062118 (2007)
    [10] S. J. Chang, T. J. Hsueh, I. C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, Y. R. Lin and B. R. Huang, IEEE Tran. Nanotechnol. 7, 754 (2008)
    [11] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, Nano. Lett. 7, 1003 (2007)
    [12] C. H. Hsiao, S. J. Chang, S. B. Wang, S. P. Chang, T. C. Li, W. J. Lin, C. H. Ko, T. M. Kuan and B. R. Huang, J. Electrochem. Soc. 156, J73 (2009)
    [13] J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi and D. Golberg, Nano Lett. 8, 2794 (2008)
    [14] X. T. Zhang, Z. Liu, Q. Li and S. K. Hark, J. Phys. Chem. B 109, 17913 (2005)
    [15] A. Colli, S. Hofmann, A. C. Ferrari, F. Martelli, S. Rubini, C. Ducati, A. Franciosi and J. Robertson, Nanotechnol. 16, S139 (2005)
    [16] V. K. Kaibyshev, W. Travnikov and W. Davydov, Phys. Solid State 45, 1374 (2003)
    [17] X. T. Zhang, K. N. Ip, Q. Li and S. K. Hark, Appl. Phys. Lett. 86, 203114 (2005)
    [18] H. Hong and W. A. Anderson, IEEE Tran. Electron. Dev. 46, 1127 (1999)
    [19] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, Nature. 415, 617 (2002)
    [20] A. G. Dong, F. D. Wang, T. L. Daulton and W. E. Buhro, Nano Lett. 7, 1308 (2007)
    [21] M. T. Bjork, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg and L. Samuelson, Appl. Phys. Lett. 81, 4458 (2002)
    [22] R. Venugopal, P. I. Lin and Y. T. Chen, J. Phys. Chem. B 110, 11691 (2006)
    [23] W. I. Park, S. J. An, J. L. Yang, G. C. Yi, S. Hong, T. Joo and M. Kim, J. Phys. Chem. B 108, 15457 (2004)
    [24] A. Yasan, R. McClintock, K. Mayes, D. H. Kim, P. Kung and M. Razeghi, Appl. Phys. Lett. 83, 4083 (2003)
    [25] E. Tournie, C. Morhain, M. Leroux, C. Ongaretto and J. P. Faurie, Appl. Phys. Lett. 67, 103 (1995)
    [26] S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski and J. Robertson, J. Appl. Phys. 94, 6005 (2003)
    [27] M. Tchernycheva, G. E. Cirlin, G. Patriarche, L. Travers, V. Zwiller, U. Perinetti and J. C. Harmand, Nano. Lett. 7, 1500 (2007)
    [28] D. L. Dheeraj, G. Patriarche, L. Largeau, H. L. Zhou, A. T. J. van Helvoort, F. Glas, J. C. Harmand, B. O. Fimland and H. Weman, Nanotechnol. 19, 1275605 (2008)
    [29] D. B. Mitzi, Inorg. Chem. 44, 7078 (2005)
    [30] S. J. Chang, C. H. Hsiao, S. C. Hung, S. H. Chih, B. W. Lan, S. B. Wang, S. P. Chang, Y. C. Cheng, T. C. Li and B. R. Huang, J. Electrochem. Soc. 157, K1 (2010)
    [31] C. S. Yang, D. Y. Hong, C. Y. Lin, W. C. Chou, C. S. Ro, W. Y. Uen, W. H. Lan and S. L. Tu, J. Appl. Phys. 83, 2555 (1998)
    CH8
    [1] B. M. Ataev, Y. I. Alivov, V. A. Nikitenko, M. V. Chukichev, V. V. Mamedov and S. S. Makhmudov, J. Optoelectron. Adv. Mater. 5, 899 (2003)
    [2] M. J. Liu and H. K. Kim, Appl. Phys. Lett. 84, 173 (2004)
    [3] S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. R. Lin, I. C. Chen and B. R. Huang, Nanotechnology 19, 095505 (2008)
    [4] D. C. Look, J. W. Hemsky and J. R. Sizelove, Phys. Rev. Lett. 82, 2552-2555 (1999)
    [5] B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 71, 301-305 (2000)
    [6] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K.Meyer, S. B. Orlinskii, J. Schmidt and P. G. Baranov, Phys. Rev. Lett. 88, 045504 (2002)
    [7] C. G. Van de Walle, Phys. Status Solidi B, 229, 221-228 (2002)
    [8] S. F. J. Cox, E. A. Davis, P. J. C. King, J. M. Gil, H. V. Alberto, R. C. Vilao, J. Piroto Duarte, N. A. De Campos and R. L. Lichti, J. Phys.-Condens. Matter, 13, 9001-9010 (2001)
    [9] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012-1015 (2000)
    [10] J. Gutowski, N. Presser and I. Broser, Phys. Rev. B. 38, 9746-9758 (1988)
    [11] S. Bethke, H. Pan and B. W. Wessels, Appl. Phys. Lett. 52, 138-140 (1988)
    [12] B. J. Jin, S. Im and S. Y. Lee, Thin Solid Films. 366, 107-110 (2000)
    [13] E. G. Bylander, J. Appl. Phys. 49, 1188-1195 (1978)
    [14] N. Riehl and O. Ortman, Z. Elektrochem., 60, 149 (1952)
    [15] F. A. Kroger and H. J. Vink, J. Chem. Phys. 22, 250 (1954)
    [16] I. Y. Prosanov and A. A. Politov, Inorg. Mater. 31, 663-664 (1995)
    [17] N. Y. Garces, L. Wang, L. Bai, N. C. Giles and L. E. Halliburton and G. Cantwell, Appl. Phys. Lett. 81, 622-624 (2002)
    [18] H. J. Egelhaaf and D. Oelkrug, J. Cryst. Growth 161, 190-194 (1996)
    [19] D. Hahn and R. Nink, Phys. Kondens. Mater. 3, 311 (1965)
    [20] M. Liu, A. H. Kitai and P. Mascher, J. Lumines. 54, 35-42 (1992)
    [21] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga and A. Shimizu, Jpn. J. Appl. Phys. 36, 1453 (1997)
    [22] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)
    [23] K.-K. Kim, H.-S. Kim, D.-K. Kwang, J.-H. Lim and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003)
    [24] Y. R. Ryu, T. S. Lee and H. W. White, Appl. Phys. Lett. 83, 87 (2003)
    [25] H.-H. Bang, D.-K. Hwang, M.-C. Park, Y.-D. Ko, I. Yun and J.-M. Myoung, Appl. Surf. Sci. 210, 177 (2003)
    [26] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu and L. D. Chen, Appl. Phys. Lett. 84, 541 (2004)
    [27] L. J. Guo, Y. Z. Zhen, W. Lei, Z. B. Hui and H. J. Yun, Chin. Phys. Lett. 19, 1494 (2004)
    [28] S. B. Zhang, S. H. Wei and A. Zunger, Phys. Rev. B 63, 075205 (2001)
    [29] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000)
    [30] E.-C. Lee, Y.-S. Kim, Y.-G. Jin and K. J. Chang, Phys. Rev. B 64, 085120 (2001)
    [31] D. C. Look, R. L. Jones, J. R. Sizelove, B. Y. Garces, N. C. Giles and L. E. Halliburton, Phys. Status Solidi A 195, 171 (2003)
    [32] S. Yamauchi, Y. Goto and T. Hariu, J. Cryst. Growth 260, 1 (2004)
    [33] K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. Part 2 39, L555 (2000)
    [34] P. Fons, A. Yamada, K. Iwata, K. Matsubara, S. Niki, K. Nakahara and H. Takasul, Nucl. Instrum. Methods Phys. Res. B 199, 190 (2003)
    [35] M. K. Puchert, P. Y. Timbrell and R. N. Lamb, J. Vac. Sci. Technol. A 14, 2220 (1996)
    [36] D. Q. Gao, Y. Xu, Z. H. Zhang, H. Gao and D. S. Xue, J. Appl. Phys. 105, 063903 (2009)
    [37] K. Laurent, D. P. Yu, S. Tusseau-Nenez and Y. Leprince-Wang, J. Phys. D: Appl. Phys. 41, 195410 (2008)
    [38] K. Laurent, D. P. Yu, G. Y. Wang and Y. Leprince-Wang 2008 Thin Solid Films
    [39] Y. C. Lee, S. Y. Hu, W. Water, Y. S. Huang, M. D. Yang, J. L. Shen, K. K. Tiong and C. C. Huang 2007 Solid State Commun. 143 250
    [40] J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)
    [41] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffman, M. Strasburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004).
    [42] V. Vaithianathan, B. T. Lee and S. S. Kim, J. Appl. Phys. 98, 043519 (2005)
    [43] F. Y. Ran, Masao Imaoka, Masaki Tanemura, Yasuhiko Hayashi1, T. S. Herng and S. P. Lau, Phys. Status Solidi B 246, 1243 (2009)
    [44] X. P. Peng, J. Z. Xu, H. Zang, B. Y. Wang and Z. G. Wang, J. Lumin. 128, 297 (2008)
    [45] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996)
    [46] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoc, J. Appl. Phys. 98, 041301 (2005)
    CH9
    [1] X. S. Fang, S. L. Xiong, T. Y. Zhai, Y. Bando, M. Y. Liao, U. K. Gautam, Y. Koide, X. Zhang, Y. T. Qian and D. Golberg, Adv. Mater. 21, 5016 (2009)
    [2] J. J. Wu and S. C. Liu, Adv. Mater. 14, 215 (2002)
    [3] W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 82, 964 (2003)
    [4] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga and A. Shimizu, Jpn. J. Appl. Phys. 36, 1453 (1997)
    [5] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)
    [6] K.-K. Kim, H.-S. Kim, D.-K. Kwang, J.-H. Lim and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003)
    [7] Y. R. Ryu, T. S. Lee and H. W. White, Appl. Phys. Lett. 83, 87 (2003)
    [8] H.-H. Bang, D.-K. Hwang, M.-C. Park, Y.-D. Ko, I. Yun and J.-M. Myoung, Appl. Surf. Sci. 210, 177 (2003)
    [9] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu and L. D. Chen, Appl. Phys. Lett. 84, 541 (2004)
    [10] L. J. Guo, Y. Z. Zhen, W. Lei, Z. B. Hui and H. J. Yun, Chin. Phys. Lett. 19, 1494 (2004)
    [11] R. L. Hoffman, B. J. Norris and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003)
    [12] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J.Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)
    [13] W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, Science 277, 1287 (1997)
    [14] R. S. Chen, T..H. Yang, H.Y. Chen, L.C. Chen, K. H. Chen, Y. J. Yang, C. H. Su and C. R. Lin, Appl. Phys. Lett. 95, 162112 (2009)
    [15] N. Pan, X. Wang, K. Zhang, H. Hu, B. Xu, F. Li, and J. G. Hou, Nanotechnol. 16, 1069 (2005)
    [16] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Appl. Phys. Lett. 78, 407
    (2001)
    [17] Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001)
    [18] Y. Du, S. Han, W. Jin, C. Zhou, and A. F. J. Levi, Appl. Phys. Lett. 83, 996 (2003)
    [19] K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung and S. Kim, Appl. Phys. Lett. 84, 4376 (2004)
    [20] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. LaRoche and S. J. Pearton, Appl. Phys. A 80, 1029 (2005)


    無法下載圖示 校內:2015-07-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE