| 研究生: |
張志山 Chang, Chih-Shan |
|---|---|
| 論文名稱: |
奈米銀半球殼二維陣列之表面電漿子共振特性 Plasmonic Resonant Properties of Silver Hemispherical Nano-Shell Structures in 2D arrays |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 表面電漿子 、奈米球殼 、奈米半球殼 、週期性結構 、Fano共振 |
| 外文關鍵詞: | Surface plasmons, Nano shell, Semi shell, Periodic structure, Fano resonance |
| 相關次數: | 點閱:105 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿子共振能在次波長尺度結構下產生很強且侷域性光學場,因此提供了廣泛的應用,包含了光電、材料以及生物醫學等等的領域,因此成為現今奈米科技當中最為重要的領域之一。在本篇論文中,我們利用有限差分時域法(FDTD)數值模擬的方式對於奈米銀球殼(Nano-shell)與半球殼(Hemispherical nano-shell)結構的單一結構與陣列結構之電場強度及電荷分佈進行模態上探討。在半球殼結構中,我們在頻譜上找到其對應的bonding與anti-bonding模態,並將其描繪出此結構之混成模型(Hybridization model)。第二個部份,我們討論二維正方形晶格(Square lattice)排列之奈米銀球殼與奈米銀半球殼在改變週期間距對於頻譜上的表現及相位共振所造成的Fano模態作分析。最後比較Fano模態與LSPR模態電荷分佈,發現了Fano共振的電荷分佈會與單一結構時LSPR模態電荷分佈作對應,並且Fano共振亦有將在單一結構不明顯之LSPR模態表現出來的效果。以上研究的分析在未來設計球殼的光學感測元件上提供重要的資訊。
Localized surface plasmon resonance (LSPR), observed in metal nanoparticle arrays interacting with an incident light field, is an emerging research area for surface-enhanced -Raman-scattering (SERS) biomedical sensing applications. The plasmonic properties of metal nanoparticles can be easily tuned by varying the shape, size and arrangement along with the dielectric environment. Particles with coreshell structure provide an extra degree of freedom to tune the LSPR wavelength. The array structure adds an extra tuning capability by setting the periodicity near the single particle LSPR wavelength to squeeze out a sharp Fano resonant peak. In nano fabrication, semi shell array has advantage over the spherical shell array by the top-down approach. Here, we investigate the LSPR cross section and mode distributions for nano-shell and semi-shell with core radius of 100 nm and shell thickness of 20nm for single and periodic structure using FDTD simulation. Higher order quadrapole modes with bonding and anti-bonding types were observed. Furthermore, we discussed Fano resonance effect on each LSPR modes by adjusting the interparticle spacing. The coupling between the dipole/quadrapole LSPR and the grating mode leads to different resonant properties. The charge distributions of dipole and quadrapole under the influence of Fano resonance are also discussed.
1. Hessel, A. and A. Oliner, A new theory of Wood’s anomalies on optical gratings. Applied Optics, 1965. 4(10): p. 1275-1297.
2. Fano, U., Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961. 124(6): p. 1866.
3. Westcott, S., et al., Relative contributions to the plasmon line shape of metal nanoshells. Physical Review B, 2002. 66(15).
4. Wang, L., F. Wang, and D. Chen, Fabrication and characterization of silver/polystyrene nanospheres with more complete coverage of silver nano-shell. Materials Letters, 2008. 62(14): p. 2153-2156.
5. Prodan, E., et al., A hybridization model for the plasmon response of complex nanostructures. Science, 2003. 302(5644): p. 419-22.
6. Gao, J., C.M. Bender, and C.J. Murphy, Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir, 2003. 19(21): p. 9065-9070.
7. Winzer, M., et al., Rapid communication Fabrication of nano-dot-and nano-ring-arrays by nanosphere lithography. Applied Physics A, 1996. 63(6): p. 617-619.
8. Krauss, P.R. and S.Y. Chou, Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe. Applied physics letters, 1997. 71(21): p. 3174-3176.
9. Gong, J., G. Li, and Z. Tang, Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today, 2012. 7(6): p. 564-585.
10. Dreaden, E.C., et al., The golden age: gold nanoparticles for biomedicine. Chem Soc Rev, 2012. 41(7): p. 2740-79.
11. Link, S., M. Mohamed, and M. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. The Journal of Physical Chemistry B, 1999. 103(16): p. 3073-3077.
12. Dai, Z., et al., In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays. Nanotechnology, 2012. 23(33): p. 335701.
13. Yin, J., et al., Multipole plasmon resonances in self-assembled metal hollow-nanospheres. Nanoscale, 2014. 6(8): p. 3934-40.
14. Liu, J., et al., Fabrication of Hollow Metal “Nanocaps” and Their Red‐Shifted Optical Absorption Spectra. Advanced Materials, 2005. 17(10): p. 1276-1281.
15. Liu, J., et al., Investigation of the optical properties of hollow aluminium'nano-caps'. Nanotechnology, 2005. 16(12): p. 3023.
16. Cortie, M. and M. Ford, A plasmon-induced current loop in gold semi-shells. Nanotechnology, 2007. 18(23): p. 235704.
17. Ye, J., et al., Symmetry breaking induced optical properties of gold open shell nanostructures. Optics express, 2009. 17(26): p. 23765-23771.
18. Knight, M.W. and N.J. Halas, Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit. New Journal of Physics, 2008. 10(10): p. 105006.
19. Gallinet, B., Fano Resonances in Plasmonic Nanostructures. 2012.
20. Anker, J.N., et al., Biosensing with plasmonic nanosensors. Nature materials, 2008. 7(6): p. 442-453.
21. Fang, N., et al., Sub–diffraction-limited optical imaging with a silver superlens. Science, 2005. 308(5721): p. 534-537.
22. Soppimath, K.S., et al., Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release, 2001. 70(1): p. 1-20.
23. Jackson, J.B. and N.J. Halas, Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci U S A, 2004. 101(52): p. 17930-5.
24. Hayashi, S. and T. Okamoto, Plasmonics: visit the past to know the future. Journal of Physics D: Applied Physics, 2012. 45(43): p. 433001.
25. Nordlander, P., et al., Plasmon hybridization in nanoparticle dimers. Nano Letters, 2004. 4(5): p. 899-903.
26. Hu, Y., R.C. Fleming, and R.A. Drezek, Optical properties of gold-silica-gold multilayer nanoshells. Optics express, 2008. 16(24): p. 19579-19591.
27. Love, J.C., et al., Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Letters, 2002. 2(8): p. 891-894.
28. Yee, K.S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag, 1966. 14(3): p. 302-307.
29. Zou, S. and G.C. Schatz, Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. The Journal of chemical physics, 2004. 121(24): p. 12606-12612.
30. Fano, U. and J. Cooper, Spectral distribution of atomic oscillator strengths. Reviews of Modern Physics, 1968. 40(3): p. 441.
31. Luk'yanchuk, B., et al., The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater, 2010. 9(9): p. 707-15.
32. Miroshnichenko, A.E., S. Flach, and Y.S. Kivshar, Fano resonances in nanoscale structures. Reviews of Modern Physics, 2010. 82(3): p. 2257.
33. Pendry, J.B., et al., Transformation optics and subwavelength control of light. Science, 2012. 337(6094): p. 549-52.
34. Luo, Y., et al., Harvesting light with transformation optics. Science China Information Sciences, 2013. 56(12): p. 1-13.
35. 邱國斌,蔡定平,物理雙月刊28卷第二期, pp.472-483, 2006.