| 研究生: |
廖靖婷 Liau, Ching-Ting |
|---|---|
| 論文名稱: |
探討Rhodostomin 及Trimucin 中連接區域對於整合蛋白辨識所扮演的角色 The Role of the Linker Region of Rhodostomin and Trimucin in Recognizing Integrins |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 蛇毒去整合蛋白 、整合蛋白 |
| 外文關鍵詞: | integrin, disintegrin |
| 相關次數: | 點閱:71 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
整合蛋白們(integrins)是一群位於細胞表面的、異質雙體,其功能經啟動訊息傳遞而與細胞的生長、死亡、黏著、移動等有關。截至目前為止,哺乳類中已發現有18種α次單元及8種β次單元經非共價鍵組成24種不同的異質雙體。整合蛋白常
藉由配體 (ligand)上的RGD (Arg-Gly-Asp)序列能與配體做結合,而RGD序列也存在許多蛇毒的去整合蛋白中,這些去整合蛋白能與整合蛋白作結合、進而抑制其功能;由於相較於胞外基質,這些去整合蛋白對整合蛋白有較佳的結合能力,因此可用來治療整合蛋白造成的相關疾病且被認為是具發展潛力的整合蛋白結抗劑。之前研究指出去整合蛋白與整合蛋白的結合能力會受到RGD區域周圍兩側胺基酸及C端區域組成不同所影響。此外,最近有研究指出去整合蛋白elegantin的連接區域 (41KKKR45T)能取代Fibronectin的Synergy site進而增加與整合蛋白 51的結合。在本實驗中,利用擁有不同連接區域序列的去整合蛋白Rhodostomin (39SRAG43K)及Trimucin (41KKKR45T) 探討連接區域對於整合蛋白 IIb3、V3、51辨識所扮演的角色。本實驗中利用Pichia pastoris系統表現表現出十六株Rho及一株Tmu的突變蛋白,並均質純化。利用血小板凝集抑制試驗及細胞黏著抑制實驗作為這些序列的功能性分析。我們發現當去整合蛋白中連接區域的序列是39KKKR43T時對整合蛋白IIb3、V3、51的活性分別有0.8-3.0、3.0-12.0、3.0-5.0倍的增加,而增加情形不一致,可能與39KKKR43T linker region 會與RGD loop、C端區域有合作關係、進而影響整個去整合蛋白與整合蛋白的結合有關。這樣的結果由Docking結構方法推測可能是由於這些帶正電的連接區域序列39KKKR43T 可能與帶負電的次單元上鄰近金屬依賴型的附著部位作用,進而經由丙胺酸突變分析發現K40A及T43A突變株對整合蛋白IIb3、V3、51的活性分別有2.0、5.0、5.0倍及2.5、5.0、5.0倍的下降,另外K39A突變株則造成對整合蛋白V3、51的活性分別有2.0、5.0倍的下降;而41K及42R的突變則無造成太大影響,顯示39K 、40K與43T可能是參與整合蛋白結合的重要胺基酸。另一方面,我們也發現I47R突變株包含連接區域序列39KKKR43T時會幫助去整合蛋白對整合蛋白51的活性有5.0-7.0倍的上升,若配合連接區域序列39SRAG43K則對整合蛋白IIb3、V3、51的活性分別有2.3、9.2、24.0倍的增加。分析不同去整合蛋白的連接區域序列(39IEEG43T、39KGAG43K、39LKEG43T及 39MKKG43T)發現連接區域序列對整合蛋白的辨識的確扮演重要角色。綜合而言,Rho突變蛋白包含序列39KKKR43T-48PRGDM53P-67Y68H、39MKKG43T-48ARGDN53P-67NGLY71G 及39KAKR43A-48ARGDN53P-67NGLY71 G可以特異性地抑制表現整合蛋白V3細胞的黏結;而含有序列39KKKRTICR47 I ARGDN53P-67NGLY71G39、
39KKKRTICR47RARGDN53P-67NGLY71G 39及SRAGKICR47RARGDN53P-67NGLY71G的突變蛋白則同時對整合蛋白V3及51有特異性。這些結果將來可作為我們探索整合蛋白與去整合蛋白複合體間的結構與活性關係的基礎,並可以幫助整合蛋白相關的藥物設計。
Integrins are a family of heterodimeric receptors, which modulate many cellular processes including growth, death, adhesion, migration, and invasion by activating several signaling pathways. Until now, 18α and 8β subunits are known in mammals to noncovalently associate and form 24 integrin heterodimers. Integrin-binding site, the RGD (arginine-glycine-aspartate) motif, is found from several important extracellular matrix proteins, which serve as adhesive integrin ligands. The RGD motif has also been found from snake venom toxins, which inhibit integrin-binding function and serve as potent integrin antagonists. Many of these proteins are potential therapeutic agents in the treatment of integrin-realted diseases because they have higher affinity than extracellular matrix proteins. Although the RGD motif is crucial for their binding to integrins, the selectivity depends on the composition of the amino acid flanking the RGD motif and C-terminal region. Recently, a region (41KKKR45T) of the disintegrin elegantin termed the “linker region” has been shown to exhibit the inhibitory activity against the synergy site of fibronectin in promoting α5β1 integrin-mediated cell adhesion. In this study we used rhodostomin (Rho), a disintegrin with a 39SRAG43K linker sequence, and trimucin (Tmu), a disintegrin with a 41KKKR45T linker sequence, as the scaffolds to study the role of different linker regions in recognizing integrins α5β1, αIIbβ3, and αvβ3. I have expressed sixteen Rho mutant proteins and one Tmu mutant protein and purified them to homogeneity. Analysis of platelet aggregation and cell adhesion assays showed that disintegrins with 41KKKR45T linker sequence exhibited 0.8-3, 3-12, and 3-5 folds increases in inhibitory activity to integrins IIb3, v3, and 51, respectively. This is consistent with our docking structure of the Rho-integrin complex that the linker region may interact with an adjacent metal-ion-dependent adhesion site of subunit through ionic interaction. Using alanine scanning mutation on the 39KKKR43T region, we found that the K40A, and T43A mutants caused 2-, 5-, and 5-, and 2.5-, 5-, and 5-folds decreases in inhibitory activity to integrins IIb3, v3, and 51, respectively. The K39A also caused 2- and 5-folds decreases in inhibitory activity to integrins v3 and 51. In contrast, the mutations on 41K and 42R have little effect on their inhibitory activity, suggesting that the 39K, 40K, and 43T residues in linker region of disintegrin may interact with integrins. We also found that the I47R mutant with 39KKKR43T exhibited 5.0-7.0-folds increases in inhibiting integrin 51, and the I47R mutant with 39SRAG43K exhibited 2.3-, 9.2-, and 24-folds-increase in inhibitory activity to integrins IIb3, v3, and 51, respectively. The analysis of the mutants containging the linker region sequences (39IEEG43T, 39KGAG43K, 39LKEG43T, and 39MKKG43T) from other disintegrins showed that the linker region sequences play an important role in their binding to integrins. Taken together, Rho mutants containing 39KKKR43T-48PRGDM53P-67Y68H, 39MKKG43T-48ARGDN53P-
67NGLY71G, and 39KAKR43A-48ARGDN53P-67NGLY71G have higher affinity for integrins V3. In addition, the mutants containing 39KKKRTICR47IARGDN53P-67NGLY71G, 39KKKRTICR47RARGD N53P-67NGLY71G, and 39SRAGKICR47RARGDN53P-67NGLY71G have higher activitiy in inhibiting integrins 51 and V3. The results of this study will serve as the basis to design potent integrins-specific disintegrins.
Alder M, Lazarus RA, Dennis MS, Wagner G.: Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science. 253: 445-8, 1991.
Altieri DC, Plescia J, Plow EF.: The structural motif glycine 190-valine 202 of the fibrinogen gamma chain interacts with CD11b/CD18 integrin (alpha M beta 2, Mac-1) and promotes leukocyte adhesion. J Biol Chem. 268: 1847-53, 1993.
Anderluh M, Cesar J, Stefanic P, Kikelj D, Janes D, Murn J, Nadrah K, Tominc M, Addicks E, Giannis A, Stegnar M, Dolenc MS.: Design and synthesis of novel platelet fibrinogen receptor antagonists with 2H-1,4-benzoxazine-3(4H)-one scaffold. A systematic study. Eur J Med Chem. 40: 25-49, 2005.
Arnaout MA, Mahalingam B, Xiong JP.: Integrin Structure, Allostery, and Bidirectional Signaling. Annu Rev Cell Dev Biol. 21: 381-410, 2005.
Berman AE, Kozlova NI, Morozevich GE.: Integrins: structure and signaling. Biochemistry.68: 1284-99, 2003.
Beviglia, L.,Stewart, G. J.;Niewiarowski, S.:Effect of four disintegrins on the adhesive and metastatic properties of B16F10 melanoma cell in a murine model. Oncol. Res. 7,7-20,1995.
Block E, Glass RS, Jacobsen NE, Johnson S, Kahakachchi C, Kaminski R, Skowronska A, Boakye HT, Tyson JF, Uden PC.: Identification and synthesis of a novel selenium-sulfur amino acid found in selenized yeast: Rapid indirect detection NMR methods for characterizing low-level organoselenium compounds in complex matrices. J Agric Food Chem. 52: 3761-71, 2004.
Chang CP, Chang JC, Chang HH, Tsai WJ, Lo SJ.: Positional importance of Pro53 adjacent to the Arg49-Gly50-Asp51 sequence of rhodostomin in binding to integrin alphaIIbbeta3. Biochem J.357: 57-64, 2001.
Chang HH, Hu ST, Huang TF, Chen SH, Lee YH, Lo SJ.: Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun. 190: 242-9, 1993.
Cochran AG, Tong RT, Starovasnik MA, Park EJ, McDowell RS, Theaker JE, Skelton NJ.: A minimal peptide scaffold for beta-turn display: optimizing a strand position in disulfide-cyclized beta-hairpins. J Am Chem Soc. 123: 625-32, 2001.
Copie V, Tomita Y, Akiyama SK, Aota S, Yamada KM, Venable RM, Pastor RW, Krueger S, Torchia DA.: Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. J Mol Biol. 277: 663-82, 1998.
Daly R, Hearn MT.: Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit. 18: 119-38, 2005.
Dennis MS, Carter P, Lazarus RA.: Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis. Proteins. 15: 312-21, 1993.
Dresner-Pollak R, Rosenblatt M.: Blockade of osteoclast-mediated bone resorption through occupancy of the integrin receptor: a potential approach to the therapy of osteoporosis. J Cell Biochem. 56: 323-30, 1994.
D'Souza SE, Ginsberg MH, Plow EF.: Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci. 16: 246-50, 1991.
Faull RJ, Du X, Ginsberg MH.: Receptors on platelets. Methods Enzymol. 245: 183-94, 1994.
Gehlsen, K. R.; Davis, G. E.; Sriramarao, P.:Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin. Exp. Metastasis 10, 111-120,1992.
Goh KL, Yang JT, Hynes RO.: Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development. 124: 4309-19, 1997.
Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Neiwiarowski S.: Disintegrins: A family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Bio. Med. 195: 168-71, 1990.
Guo RT, Chou LJ, Chen YC, Chen CY, Pari K, Jen CJ, Lo SJ, Huang SL, Lee CY, Chang TW, Chaung WJ.: Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins. 43: 499-508, 2001.
Harper M, Thompson TL, Zhu YN, Smith RL, Carden D, Coe L, Alexander B, Alexander JS.: Rapid, high-yield method for the bulk purification of fibronectin from human plasma. BioTechniques. 28: 636-8, 2000.
Hautanen A, Gailit J, Mann DM, Ruoslahti E.: Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J Biol Chem. 264: 1437-42, 1989.
Hemler ME, Huang C, Schwarz L.: The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. J Biol Chem. 262: 3300-9, 1987.
Higgins DR, Cregg JM, Editors.: Methods in Molecular Biology: Pichia Protocols, Totowa, NJ: Humana Press, 1998.
Hong SY, Sohn YD, Chung KH, Kim DS.: Structural and functional significance of disulfide bonds in saxatilin, a 7.7 kDa disintegrin. Biochem Biophys Res Commun. 293: 530-6, 2002.
Huang TF, Sheu JR, Teng CM, Chen SW, Liu CS.: Triflavin, an antiplatelet Arg-Gly-Asp-containing peptide, is a specific antagonist of platelet membrane glycoprotein IIb-IIIa complex. J Biochem. 109: 328-34, 1991.
Huang TF, Yeh CH, Wu WB.: Viper venom components affecting angiogenesis. Haemostasis. 31: 192-206, 2001.
Huang YS, Chen Z, Yang ZY, Wang TY, Zhou L, Wu JB, Zhou LF. Preparation and characterization of a potent,long-lasting recombinant human serum albumin-interferon-α2b fusion protein expressed in Pichia pastoris, Eur. J. Pharm. Biopharm.67,301–308.2007.
Huang TF, Wu YJ, Ouyang C.: Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta. 925: 248-57, 1987.
Humphries MJ.: Cell-substrate adhesion assays. Current Protocols in Cell Biology. 9.1.1-9.1.11, 1998.
Humphries MJ.: Integrin structure. Biochem Soc Trans. 28: 311-39, 2000.
Humphries MJ, Mould AP.: Structure. An anthropomorphic integrin. Science. 294: 316-7, 2001.
Hynes RO.: Integrins: a family of cell surface receptors. Cell. 48: 549-54, 1987.
Hynes RO.: Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69: 11-25, 1992.
Jaseja M, Lu X, Williams JA, Sutcliffe MJ, Kakkar VV, Parslow RA, Hyde EI.: 1H-NMR assignments and secondary structure of dendroaspin, an RGD-containing glycoprotein IIb-IIIa (alpha IIb-beta 3) antagonist with a neurotoxin fold. Eur J Biochem. 226: 861-8, 1994.
Kagami S, Kondo S, Loster K, Reutter W, Kuhara T, Yasutomo K, Kuroda Y.: Alpha1beta1 integrin-mediated collagen matrix remodeling by rat mesangial cells is differentially regulated by transforming growth factor-beta and platelet-derived growth factor-BB. J Am Soc Nephrol. 10: 779-89, 1999.
Kagami S, Kuhara T, Yasutomo K, Okada K, Loster K, Reutter W, Kuroda Y.: Transforming growth factor-beta (TGF-beta) stimulates the expression of beta1 integrins and adhesion by rat mesangial cells. Exp Cell Res. 229: 1-6, 1996.
Kim S, Bell K, Mousa SA, Varner JA.: Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol. 156: 1345-62, 2000.
Koivunen E, Wang B, Ruoslahti E.: Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol. 124: 373-80, 1994.
Koivunen E, Wang B, Ruoslahti E.: Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology. 13: 265-70, 1995.
Krammer A, Craig D, Thomas WE, Schulten K, Vogel V. A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. Matrix Biol.21(2):139-47, 2002.
Kulkarni GV, Chen B, Malone JP, Narayanan AS, George A.: Promotion of selective cell attachment by the RGD sequence in dentine matrix protein 1. Arch Oral Biol. 45: 475-84, 2000.
Kuntz ID.: Structure-based strategies for drug design and discovery. Science. 257: 1078-82, 1992.
Lahteenmaki K, Edelman S, Korhonen TK.: Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol. 13: 79-85, 2005.
Lee JO, Rieu P, Arnaout MA, Liddington R.: Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell. 80: 631-8, 1995.
LeMaster DM, Richards FM.: 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry. 24: 7263-8, 1985.
Li R, Hoess RH, Bennett JS, DeGrado WF.: Use of phage display to probe the evolution of binding specificity and affinity in integrins. Protein Eng. 16: 65-72, 2003.
Locardi E, Mullen DG, Mattern RH, Goodman M.: Conformations and pharmacophores of cyclic RGD containing peptides which selectively bind integrin alpha(v)beta3. J Pept Sci. 5: 491-506, 1999.
Lueking A, Holz C, Gotthold C, Lehrach H, Cahill D.: A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein Expr Purif. 20: 372-8, 2000.
Lu X, Rahman S, Kakkar VV, Authi KS.: Substitutions of proline 42 to alanine and methionine 46 to asparagine around the RGD domain of the neurotoxin dendroaspin alter its preferential antagonism to that resembling the disintegrin elegantin. J Biol Chem. 271: 289-94, 1996.
Lu X, Lu D, Scully MF, Kakkar VV.:Modulation of integrin-binding selectivity by mutation within the RGD Loop of snake venom proteins: a novel drug development approach. Curr Med Chem Cardiovasc Hematol Agents. 1(2):189-96,2003.
Lustbader JW, Birken S, Pollak S, Pound A, Chait BT, Mirza UA, Ramnarain S, Canfield RE, Brown JM.: Expression of human chorionic gonadotropin uniformly labeled with NMR isotopes in Chinese hamster ovary cells: an advance toward rapid determination of glycoprotein structures. J Biomol NMR. 7: 295-304, 1996.
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM.: Heterologous protein production using the Pichia pastoris expression system. Yeast. 22: 249-70, 2005.
Marcinkiewicz C.: Functional characteristic of snake venom disintegrins: potential therapeutic implication. Curr Pharm. 11: 815-27, 2005.
Marcinkiewicz C, Calvete JJ, Vijay-Kumar S, Marcinkiewicz MM, Raida M, Schick P, Lobb RR, Niewiarowski S.: Structural and functional characterization of EMF10, a heterodimeric disintegrin from Eristocophis macmahoni venom that selectively inhibits alpha 5 beta 1 integrin. Biochemistry. 38: 13302-9, 1999.
Mark S. Dennis, Paul Carter, Robert A. Lazarus:Binding interaction of kistrin with platelet glycoprotein IIb-IIa:analysis by site-directed mutagenesis. Proteins:structure, function, and genetics 15:312-321,1993
Marcinkiewicz C, Vijay-Kumar S, McLane MA, Niewiarowski S.: Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site. Blood. 90: 1565-75, 1997.
Martin KH, Slack JK, Boerner SA, Martin CC, Parsons JT.: Integrin connections map: to infinity and beyond. Science. 296: 1652-3, 2002.
Marugan JJ, Manthey C, Anaclerio B, Lafrance L, Lu T, Markotan T, Leonard KA, Crysler C, Eisennagel S, Dasgupta M, Tomczuk B.: Design, synthesis, and biological evaluation of novel potent and selective alphavbeta3/alphavbeta5 integrin dual inhibitors with improved bioavailability. Selection of the molecular core. J Med Chem. 48: 926-34, 2005.
Matter ML, Zhang Z, Nordstedt C, Ruoslahti E.: The alpha5beta1 integrin mediates elimination of amyloid-beta peptide and protects against apoptosis. J Cell Biol. 141: 1019-30, 1998.
McDowell RS, Dennis MS, Louie A, Shuster M, Mulkerrin MG, Lazarus RA.: Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins. Biochemistry. 31: 4766-72, 1992.
McLane MA, Marcinkiewicz C, Vijay-Kumar S, Wierzbicka-Patynowski I, Niewiarowski S.: Viper venom disintegrins and related molecules. Proc Soc Exp Biol Med. 219: 109-19, 1998.
McLane MA, Sanchez EE, Wong A, Paquette-Straub C, Perez JC.: Disintegrins. Curr Drug Targets Cardiovasc Haematol Disord. 4: 327-55, 2004.
Minoux H, Chipot C, Brown D, Maigret B.: Structural analysis of the KGD sequence loop of barbourin, an alphaIIbbeta3-specific disintegrin. J Comput Aided Mol Des. 14: 317-27, 2000.
Monleon D, Esteve V, Kovacs H, Calvete JJ, Celda B.: Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. Biochem J. 387: 57-66, 2005.
Monsalve RI, Lu G, King TP.: Expressions of recombinant venom allergen, antigen 5 of yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast. Protein Expr Purif. 16: 410-6, 1999.
Morgan WD, Kragt A, Feeney J.: Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies. J Biomol NMR. 17: 337-47, 2000.
Morris GM, Goodsell DS, Huey R, Olson AJ.: Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des. 10: 293-304, 1996.
Mousa SA.: Anti-integrin as novel drug-discovery targets: potential therapeutic and diagnostic implications. Curr Opin Chem Biol. 6: 534-41, 2002.
Nadrah K, Dolenc MS.: Dual antagonists of integrins. Curr Med Chem. 12: 1449-66, 2005.
Pfaff M, McLane MA, Beviglia L, Niewiarowski S, Timpl R.: Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition. Cell Adhes Commun. 2: 491-501, 1994.
Pierschbacher MD, Ruoslahti E.: Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem. 262: 17294-8, 1987.
Plow EF, Haas TA, Zhang L, Loftus J, Smith JW.: Ligand binding to integrins. J Biol Chem. 275: 21785-8, 2000.
Rahman S, Aitken A, Flynn G, Formstone C, Savidge GF.: Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. Biochem J. 335: 247-57, 1998.
Roivainen M, Piirainen L, Hovi T, Virtanen I, Riikonen T, Heino J, Hyypia T.: Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology. 203: 357-65, 1994.
Ruouslahti E.: RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 12: 697-715, 1996.
Rushika Sumathipala, Cunshuan Xu, Julian Seago, A. Paul Mould, Martin J. Humphries, Sue E. Craig, Yatin Patel, Errol S. Wijelath, Michael Sobel, and Salman Rahman:The “Linker” Region (Amino Acids 38–47) of the disintegrin elegantin is a novel inhibitory domain of integrin α5β1-dependent cell adhesion on fibronectin. J Biol Chem. 281:49 37686-37696, 2006.
Scarborough RM, Rose JW, Hsu MA, Phillips DR, Fried VA, Campbell AM, Nannizzi L, Charo IF.: Barbourin: A GPIIb-IIIa specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem. 266: 9359-62, 1991.
Scarborough RM, Rose JW, Naughton MA, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF.: Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem. 268: 1058-65, 1993.
Shimaoka M, Springer TA.: Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov. 2: 703-16, 2003.
Shimaoka M, Takagi J, Springer TA.: Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct. 31: 485-516, 2002.
Siddiqi AR, Persson B, Zaidi ZH, Jornvall H.: Characterization of two platelet aggregation inhibitor-like polypeptides from viper venom. Peptides. 13: 1033-7, 1992.
Smith JW, Le Calvez H, Parra-Gessert L, Preece NE, Jia X, Assa-Munt N.: Selection and structure of ion-selective ligands for platelet integrin alpha IIb(beta) 3. J Biol Chem. 277: 10298-305, 2002.
Smith JW, Piotrowicz RS, Mathis D.: A mechanism for divalent cation regulation of beta 3-integrins. J Biol Chem. 269: 960-7, 1994.
Springer TA, Wang JH.: The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv Protein Chem. 68: 29-63, 2004.
Sutcliffe MJ, Jaseja M, Hyde EI, Lu X, Williams JA.: Three-dimensional structure of the RGD-containing neurotoxin homologue dendroaspin. Nat Struct Biol. 1: 802-7, 1994.
Takagi J, Petre BM, Walz T, Springer TA.: Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 110: 599-11, 2002.
Takagi J.:Structural basis for ligand recognition by integrins. Current Opinion in Cell Biology 19:557–564, 2007.
Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF, Hynes RO.: Structure of integirn, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 46:271-82, 1986.
Tsai IH, Wang YM, Lee YH.:Characterization of a cDNA encoding the precursor of platelet aggregation inhibitor and metallproteinase from Trimeresurus mucrosquamatus venom. Biochimica et Biophysica Acta. 1200:3,337-340,1994.
Tseng YL, Peng HC, Huang TF.:Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed. Sci. 11(5):683-91.2004.
Trikha M, De Clerck YA, Markland FS. :Contortrostatin, a snake Venom disintegrin, inhibits beta1 integrin-mediated human metastatic melanoma cell adhesion and blocks experimental metastasis. Cancer Res.54, 4993-4998, 1994.
Mao Y, Schwarzbauer JE.:Accessibility to the fibronectin synergy site in a 3D matrix regulates engagement of α5β1 versus αvβ3 integrin receptors.Cell Commun Adhes. 13(5-6):267-77,2006.
Mould AP, Askari JA, Aota S, Yamada KM, Irie A, Takada Y, Mardon HJ, Humphries MJ.:Defining the Topology of Integrin a5b1-Fibronectin Interactions Using Inhibitory Anti-a5 and Anti-β1 Monoclonal Antibodies. J Biol Chem. 11;272(28):17283-92.1997.
Wattam B, Shang D, Rahman S, Egglezou S, Scully M, Kakkar V, Lu X.: Arg-Tyr-Asp (RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of beta1 and beta3 integrins. Biochem J. 356: 11-7, 2001.
Wehrle-Haller B, Imhof BA.: Integrin-dependent pathologies. J Pathol. 200: 481-7, 2003.
White CE, Kempi NM, Komives EA.: Expression of highly disulfide-bonded proteins in Pichia pastoris. Structure. 2: 1003-5, 1994.
Wierzbicka-Patynowski I, Niewiarowski S, Marcinkiewicz C, Calvete JJ, Marcinkiewicz MM, McLane MA.: Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem. 274: 37809-14, 1999.
Wood MJ, Komives EA.: Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J Biomol NMR. 13: 149-159, 1999.
Wright PS, Saudek V, Owen TJ, Harbeson SL, Bitonti AJ.: An echistatin C-terminal peptide activates GPIIbIIIa binding to fibrinogen, fibronectin, vitronectin and collagen type I and type IV. Biochem J. 293: 263-7, 1993.
Xiao T, Takagi J, Coller BS, Wang JH, Springer TA.: Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 432: 59-67, 2004.
Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA.: Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 294: 339-45, 2001.
Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA.: Crystal structure of the extracellular segment of integrin alphaV beta3 in complex with an Arg-Gly-Asp ligand. Science. 296: 151-5, 2002.
Xu B, Munoz I IG, Janson JC, Stahlberg J.: Crystallization and X-ray analysis of native and selenomethionyl beta-mannanase Man5A from blue mussel, Mytilus edulis, expressed in Pichia pastoris. Acta Crystallogr D Biol Crystallogr. 58: 542-5, 2002.
Yang RS, Chiang HS, Tang CH, Yeh CS, Huang TF.: Rhodostomin inhibits thrombin-enhanced adhesion of ROS 17/2.8 cells through the blockade of alphavbeta3 integrin. Toxicon. 46: 387-93, 2005.
Yatohgo T, Izumi M, Kashiwagi H, Hayashi M.: Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct. 13: 281-92, 1988.
郭瑞庭 馬來蝮蛇蛇毒基因的選殖及蛇毒蛋白之功能及三度空間結構之研究。國立成功大學生物化學研究所碩士論文,1998。
陳彥青 馬來蝮蛇蛇毒蛋白及其突變株的結構與動力學之研究。國立成功大學生物化學研究所碩士論文,2001。
許家豪 含RGD序列蛋白在辨識組合蛋白上的結構與功能關係之研究。國立成功大學生物化學研究所碩士論文,2003。
劉祐禎 利用馬來蝮蛇蛇毒蛋白突變株研究在辨識組合蛋白v3和51的結構決定要素。國立成功大學生物化學研究所碩士論文,2004。
陳秋月 利用馬來蝮蛇去整合蛋白以研究整合蛋白們所辨識的序列和製備胺基酸選擇性同位素標示的蛋白。國立成功大學基礎醫學研究所博士論文,2005。