簡易檢索 / 詳目顯示

研究生: 劉豪哲
Liu, Hao-Chie
論文名稱: 一S-SUCr-U上肢骨骼模型及其於上肢驅動輪椅與復健機械手的運動及負荷分析
An S- SUCr -U Skeleton Model and Its Applications on the Kinematic and Loading Analyses of the Upper Limb for Wheelchair Propulsion and Rehabilitation Robot Training
指導教授: 邱顯堂
Chiou, Shen-Tarng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 空間機構齊次坐標轉換矩陣骨骼模型上肢負荷分析
外文關鍵詞: Spatial mechanism, Homogeneous coordinate transformation matrix, Skeleton model, Upper extremity, Loading analysis
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日常生活中,人體的上肢擔負著完成許多動作的重要功能。當設計用上肢所驅動的物件(如輪椅及運動器材等)時,若要得到較佳的設計,應建立上肢在驅動該物件過程中,其整體的設計與分析模式,以了解上肢在該過程中,各關節的運動與驅動力之情形,進而可評估所設計出的物件性能之優劣。
    本文的主要目的是在假設肩部不動,且動作緩慢而可忽略慣性的影響,另外,亦忽略關節黏滯力與肌腱作用等前提下,提出一上肢的骨骼模型,並分別針對上肢驅動輪椅及一復健機械手,建立其運動及負荷分析模式。首以一空間S-SUCr-U運動鏈為基礎,建立上肢肩關節至腕關節之間的骨骼模型,再分別以2自由度空間RU-SUCr-S機構模擬上肢驅動輪椅,及用3自由度空間FR-SUCr-S機構模擬上肢驅動復健機械手而帶動其手部作不同的直線軌跡運動時的模型。本文將先以齊次坐標轉換矩陣分別建立其位移分析模式,不僅求出其數值解,亦使用一CAD軟體驗證之,進而以牛頓運動定律建立其負荷分析模式,並進行實例分析,說明所建立各模式的使用及顯示其分析結果。接著針對上肢驅動輪椅,應用最佳設計的方法,分別以降低相對不舒適度及關節負荷為目標,決定上肢驅動輪椅時的合理運動模式。
    本研究針對上肢骨骼進行了模擬與分析,若能加上肌肉系統,可進一步建立上肢的骨骼肌肉模型;若能再與醫療、健身、及手工具等器械的設計與分析模式相整合,應能設計製作出更佳的產品。

    Upper limbs have very important functions on accomplishing many daily activities. In order to have better designs of the objects which are driven by upper limbs (such as wheelchairs, or exercise trainers, etc.), the model of the upper limb should be developed and be integrated with those for the design and analysis of the objects, so as to have better investigation and evaluation of their characteristics.
    The main purpose of this study is to develop models for the kinematic and loading analyses of the upper extremity in wheelchair propulsion and rehabilitation robot training, with the assumptions that the shoulders are kept fixed, the motion is slow, the viscous force and the tendon influence are ignored. Firstly, the upper extremity skeleton model from the shoulder joint to the wrist joint is proposed based on a spatial S-SUCr -U kinematic chain. The spatial RU-SUCr-S mechanism, which has 2 DOF, is used to simulate an upper limb propelling one side of a wheelchair; furthermore, a spatial FR-SUCr-S mechanism is adopted as the model of the wrist operating a rehabilitation robot with linear orbits. Their kinematic analysis models are developed by using homogeneous transform matrix. Except solving the equations with numerical techniques, the solutions are also checked with those gotten by using commercial CAD software. Consequently, the models for the loading analysis of the mechanisms are also built based on Newton’s laws of motion. Furthermore, wheelchair propulsion and rehabilitation robot training are adopted as the examples to demonstrate the usages of the models developed and to show the results of the analyses. Based on the models of the kinematic and loading analyses of the RU-SUCr-S mechanism, a model for using optimization techniques to determine the relations between 2 DOF of the mechanism is built in order to get reasonable postures of the upper extremity in wheelchair propulsion. Except necessary constraints considering the requirements of simulating an upper limb propelling a wheelchair, two objective functions of minimizing the joint torques and minimizing discomfort scores are applied.
    The results of this study provide a base for developing musculoskeletal models of upper limbs. If they can be integrated with the design and analysis models of medical instruments, body-fitness trainers, hand tools, etc., it should be helpful to develop better products of theirs.

    目 錄 頁次 摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 表目錄 viii 圖目錄 ix 符號說明 xix 第一章 前言 1 1.1 研究動機 1 1.2 文獻回顧 1 1.2.1 空間四連桿機構 1 1.2.2 相對不舒適度 2 1.2.3 復健機械手 2 1.2.4 上肢驅動輪椅相關實驗量測分析 3 1.2.5 上肢及其關節的模型 4 1.2.6 上肢驅動輪椅理論模型 5 1.3 研究目的與方法 6 1.4 本文內容 7 第二章 運動分析 8 2.1 齊次坐標轉換矩陣 8 2.2 上肢驅動輪椅的運動分析 11 2.2.1 U-SUCr-S機構之幾何構型 11 2.2.2 模擬人體上肢驅動輪椅時之模型 13 2.2.3 坐標系統與轉換矩陣 14 2.2.4 位移分析數值解 20 2.2.5 接頭與質心位置分析 21 2.2.6 實例分析 23 2.2.6.1 角位移分析 23 2.2.6.2 質心位置分析 27 2.3 上肢驅動復健機械手的運動分析 28 2.3.1 坐標系統與轉換矩陣 29 2.3.2 位移分析數值解 34 2.3.3 接頭與質心位置分析 34 2.3.4 實例分析 35 2.3.4.1 角位移分析 35 2.3.4.2 質心位置分析 40 2.4 小結 41 第三章 負荷分析 42 3.1 上肢驅動輪椅的負荷分析 42 3.1.1 靜力平衡與靜力矩平衡方程式 42 3.1.2 接頭限制方程式 46 3.1.3 兩個驅動的負荷分析模式 47 3.1.4 多個驅動的負荷分析模式 47 3.1.4.1 目標函數與設計變數 47 3.1.4.2 限制條件 48 3.2 上肢驅動復健機械手的負荷分析 48 3.2.1 靜力平衡與靜力矩平衡方程式 48 3.2.2 接頭限制方程式 51 3.2.3 三個驅動的負荷分析模式 52 3.2.4 多個驅動的負荷分析模式 53 3.2.4.1 目標函數與設計變數 53 3.2.4.2 限制條件 53 3.3實例分析 54 3.3.1 上肢驅動輪椅的負荷分析 54 3.3.1.1實例一:驅動在手腕與輪圈 55 3.3.1.2實例二:驅動在肩關節與肱尺關節 57 3.3.1.2實例三:多驅動 59 3.3.2 上肢驅動輪椅的負荷分析 60 3.3.2.1實例四:驅動在腕部 60 3.3.2.2實例五:驅動在肩關節 62 3.3.2.3實例六:多驅動 64 3.4小結 66 第四章 上肢驅動輪椅之最佳運動模式 68 4.1 數學模式 68 4.1.1 設計變數 68 4.1.2 目標函數 68 4.1.2.1 降低關節扭矩 68 4.1.2.2 降低相對不舒適度 69 4.1.3 限制條件 73 4.2 實例分析 74 4.3 小結 79 第五章 結論與建議 80 參考文獻 82 附錄A上肢骨骼與關節模型 89 附錄B第三章實例分析結果 94 附錄C計算全域關節角位置Φi 114 自述 121 著作權聲明 122

    參 考 文 獻
    Abdullah, H. A., Tarry, C., Datta, R., Mittal, G. S., and Abderrahim, M., 2007, "Dynamic Biomechanical Model for Assessing and Monitoring Robot-Assisted Upper-Limb Therapy," Journal of Rehabilitation Research and Development, Vol. 44, No. 1, pp. 43-61.
    Ananthasuresh, G. K., and Kramer, S. N., 1991, "Analysis and Optimal Synthesis of the RSCR Spatial Mechanism," American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, Vol. 32, No. 2, pp. 371-381.
    Blana, D., Hincapie, J. G., Chadwick, E. K., and Kirsch, R. F., 2008, "A Musculoskeletal Model of the Upper Extremity for Use in the Development of Neuroprosthetic Systems," Journal of Biomechanics, Vol. 41, pp. 1714-1721.
    Boninger, M. L., Cooper, R. A., Shimada, S. D., and Rudy, T. E., 1998, "Shoulder and Elbow Motion During Two Speeds of Wheelchair Propulsion: a Description Using a Local Coordinate System," Spinal Cord, Vol. 36, No. 6, pp. 418-426.
    Buckley, M. A., and Johnson, G. R., 1997, "Computer Simulation of the Dynamics of a Human Arm and Orthosis Linkage Mechanism," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 211, pp. 349-357.
    Chany, A.-M., Marras, W. S., and Burr, D. L., 2007, "The Effect of Phone Design on Upper Extremity Discomfort and Muscle Fatigue," Human Factors, Vol. 49, No. 4, pp. 602-618.
    Denavit, J., and Hartenberg, R. S., 1955, "A Kinematics Notation for Lower Pair Mechanisms Based on Matrices," ASME Transactions, Journal of Applied Mechanics, Vol. 22, No. 2, pp. 215-221.
    Desroches, G., Dumas, R., Pradon, D., Vaslin, P., Lepoutre, F.-X., and Chèze, L., 2010, "Upper Limb Joint Dynamics during Manual Wheelchair Propulsion," Clinical Biomechanics, Vol. 25, No. 4, pp. 299-306.
    Duffy, J., and Gilmartin, M. J., 1978, "Displacement Analysis of the Generalised RSSR Mechanism," Mechanism and Machine Theory, Vol. 13, No. 5, pp. 533-541.
    Dul, J., Douwes, M., and Smitt, P., 1994, "Ergonomic Guidelines for the Prevention of Discomfort of Static Postures Based on Endurance Data," Ergonomics, Vol. 37, No. 5, pp. 807-815.
    Fazel-Rezai, R., Shwedyk, E., Onyshko, S., and Cooper, J. E., 1996, "Power Analysis of Upper Limb Movement," Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, Vol. 2, pp. 621-622.
    Fischer, I. S., 1999, Dual-Number Methods in Kinematics, Statics and Dynamics, CRC Press LLC, Boca Raton, Florida, U.S.A., pp. 60-65.
    Garner, B. A. and Pandy, M. G., 1999, "A Kinematic Model of the Upper Limb Based on the Visible Human Project Image Dataset," Computer Methods in Biomechanics and Biomedical Engineering, Vol. 2, pp. 107-124.
    Gattamelata, D., Pezzuti, E., and Valentini, P. P., 2007, "Accurate Geometrical Constraints for the Computer Aided Modelling of the Human Upper Limb," Computer-Aided Design, Vol. 39, pp. 540-547.
    Gonzalez, L. J., Maida, J. C., Miles, E. H., Rajulu, S. L., and Pandya, A. K., 2002, "Work and Fatigue Characteristics of Unsuited and Suited Humans during Isolated Isokinetic Joint Motions," Ergonomics, Vol. 45, No. 7, pp. 484-500.
    Hingtgen, B., McGuire, J. R., Wang, M., and Harris, G. F., 2006, "An Upper Extremity Kinematic Model for Evaluation of Hemiparetic Stroke," Journal of Biomechanics, Vol. 39, No. 4, pp. 681-688.
    Holzbaur, K. R. S., Murray, W. M., and Delp, S. L., 2005, "A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control," Annals of Biomedical Engineering, Vol. 33, No. 6, pp. 829-840.
    Kee, D., and Karwowski, W., 2002, "Ranking Systems for Evaluation of Joint and Joint Motion Stressfulness Based on Perceived Discomforts," Applied Ergonomics, Vol. 34, No. 2, pp. 167-176.
    Kiguchi, K., Tanaka, T., and Fukuda, T., 2004, "Neuro-Fuzzy Control of a Robotic Exoskeleton with EMG Signals," IEEE Transactions on Fuzzy Systems, Vol. 12, No. 4, pp. 481-490.
    Kung, P.-C., Lin C.-C. K., Ju M.-S., 2009, "Time Course of Abnormal Synergies of Stroke Patients Treated and Assessed by a Neuro-rehabilitation Robot," IEEE International Conference on Rehabilitation Robotics, ICORR 2009, June 23-26, 2009, Kyoto International Conference Center, Japan, pp. 12-17.
    Lemay, M. A., and Crago, P. E., 1996, "A Dynamic Model for Simulating Movements of the Elbow, Forearm, and Wrist," Journal of Biomechanics, Vol. 29, No. 10, pp. 1319-1330.
    Lombardi Jr., A. de B., and Dedini, F. G., 2009, "Biomechanical Model for the Determination of Forces on Upper-extremity Members during Standard Wheelchair Propulsion," Mathematical and Computer Modelling, Vol. 49, No. 7-8, pp. 1288-1294.
    Lowe, B. D., and Krieg, E. F., 2009, "Relationships between Observational Estimates and Physical Measurements of Upper Limb Activity," Ergonomics, Vol. 52, No. 5, pp. 569-583.
    Marlene, J. A., and Cooper, J. M., 1995, Biomechanics of Human Movement, Brown and Benchmark, Madison, Wisconsin, U.S.A..
    Mercer, J. L., Boninger, M., Koontz, A., Ren, D., Dyson-Hudson, T., and Cooper, R., 2006, "Shoulder Joint Kinetics and Pathology in Manual Wheelchair Users," Clinical Biomechanics, Vol. 21, No. 8, pp. 781-789.
    Mochizuki, Y., Seiji, I., and Koichi, O., 2000, "Generating Artificially Mastered Motions for an Upper Limb in Baseball Pitching from Several Objective Functions," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 30, No. 3, pp. 373-382.
    Molian, S., 1973, "Kinematics and Dynamics of the RSSR Mechanism," Mechanism and Machine Theory, Vol. 8, No. 2, pp. 271-282.
    Mukhopadhyay, P., O'Sullivan, L. W., and Gallwey, T. J., 2007, "Estimating Upper Limb Discomfort Level due to Intermittent Isometric Pronation Torque with Various Combinations of Elbow Angles, Forearm Rotation Angles, Force and Frequency with Upper Arm at 90 Abduction," International Journal of Industrial Ergonomics, Vol. 37, No. 4, pp. 313-325.
    Nunome, H., Wataru, D., Shinji, S., Yasuo, I., and Kyonosuke, Y., 2002, "A Kinematic Study of the Upper-limb Motion of Wheelchair Basketball Shooting in Tetraplegic Adults," Journal of Rehabilitation Research and Development, Vol. 39, No. 1, pp. 63-71.
    Pennestrì, E., Stefanelli, R., Valentini, P. P., Vita, L., 2007, "Virtual Musculo-Skeletal Model for the Biomechanical Analysis of the Upper Limb," Journal of Biomechanics, Vol. 40, No. 6, pp. 1350-1361.
    Pigeon, P., Yahia, L., and Feldman, A. G., 1996, "Moment Arms and Lengths of Human Upper Limb Muscles as Functions of Joint Angles," Journal of Biomechanics, Vol. 29, No. 10, pp. 1365-1370.
    Ronald L. L. M. D., 1992, "Biomechanics of the Distal Radioulnar Joint," Clinical Orthopaedics and Related Research, No. 275, pp. 46-56.
    Rosati, G., Gallina, P., and Masiero, S., 2007, "Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 15, No. 4, pp. 560-569.
    Rosheim, M. E., 1994, Robot Evolution:the Development of Anthrobotics, Wiley, New York, U.S.A..
    Sasaki, M., Iwami, T., Obinata, G., Miyawaki, K., Matsuo, K., and Kiguchi, K., 2007, "Development of a New Adaptation System for a Manual Wheelchair Based on Human Body Function," 2007 International Symposium on Micro-NanoMechatronics and Human Science, MHS, November 11-14, 2007, Nagoya, Japan, pp. 478-483.
    Schiele, A., and Van der Helm, F. C. T., 2006, "Kinematic Design to Improve Ergonomics in Human Machine Interaction," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 14, No. 4, pp. 456-469.
    Shan G., and Bohn., C., 2003, "Anthropometrical Data and Coefficients of Regression Related to Gender and Race," Applied Ergonomics, Vol. 34, No. 4, pp. 327-337.
    Straker, L., Burgess-Limerick, R., Pollock, C., Coleman, J., Skoss, R., and Maslen, B., 2008, "Children's Posture and Muscle Activity at Different Computer Display Heights and during Paper Information Technology Use," Human Factors, Vol. 50, No. 1, pp. 49-61.
    Suareo, F. O., and Gupta, K. C., 1988, "Design of Quick-Returning R-S-S-R Mechanisms," ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, No. 4, pp. 423-428.
    Thompson, J. M., Reinholtz, C. F., and Myklebust, A., 1988, "Exact Analysis and Synthesis of the RSCR Spatial Mechanism," American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, Vol. 15, No. 1, pp. 471-478.
    Tondu, B., 2008, "A Kinematic Model of the Upper Limb with a Clavicle-like Link for Humanoid Robots," International Journal of Humanoid Robotics, Vol. 5, No. 1, pp. 87-118.
    Watanabe, K., Sekine, T., and Nango, J., 1998, "Kinematic Analysis and Branch Identification of RSCR Spatial Four-Link Mechanisms," JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, Vol. 41, No. 3, pp. 450-459.
    Wu, H.-W., Berglund, L. J., Su, F.-C., Yu, B., Westreich, A., Kim, K.-J., and An, K.-N., 1997, "Method for Three-Dimensional Kinetic Analysis of Upper Extremity in Wheelchair Propulsion," American Society of Mechanical Engineers, Bioengineering Division (Publication) BED, Vol. 35, pp. 329-330.
    Zhou, H., Hu, H., and Tao, Y., 2006, "Inertial Measurements of Upper Limb Motion," Medical and Biological Engineering and Computing, Vol. 44, No. 6, pp. 479-487.
    江迦拿,2005,"降低相對不舒適度、關節負荷及驅動扭矩之輪椅尺寸最佳設計",碩士論文,國立成功大學機械工程學系,台南,台灣。
    江傳江 編譯,2003,骨骼肌肉評估:基礎與技術,合記圖書出版社,台北,台灣。(原著:Palmer, M., L., and Epler, M., E., 1998, Fundametals of Musculoskeletal Assessment Techniques, Lippincott Williams & Wilkins, US.)
    李孔嘉,1995,運動傷害防治與簡易生物力學,博遠出版有限公司,台北,台灣。
    李玉龍,1990,人體工學概論,六合出版社,台北,台灣。
    吳思穎,2003,"上肢復健機器臨床試驗與改良",碩士論文,國立成功大學機械工程學系,台南,台灣。
    吳維等人編譯,1987,解剖學,合記出版社,台北,台灣。
    吳鴻文,1998,"輪椅驅動之上肢生物力學",博士論文,國立成功大學醫學工程研究所,台南,台灣。
    范宏竹,2003,"設計發展機器手臂輔助系統於中風病人的上肢治療訓練",碩士論文,國立成功大學醫學工程學系,台南,台灣。
    陳宜成,2010,"使用SUU為基礎之模型於上肢驅動輪椅及復健機械手之運動及靜力分析",碩士論文,國立成功大學機械工程學系,台南,台灣。
    徐玉珍,2003,"輪椅設計系統之研發",碩士論文,國立台北科技大學機電整合研究所,台北,台灣。
    許世昌,2001,新編解剖學,永大書局有限公司,台北,台灣。
    許樹淵,1976,人體運動力學,協進出版社,台北,台灣。
    陸敬文,1991,"輪椅驅動之三維運動分析",碩士論文,國立成功大學醫學工程研究所,台南,台灣。
    張家誠,1998,"輪椅驅動時座椅位置在上肢生物力學之效應",碩士論文,國立成功大學醫學工程研究所,台南,台灣。
    張豐榮與郭玉梅 編譯,1990,人體的地圖,暢文出版社,台北,台灣。(原著:高橋長雄,1898,からだの地図帳,講談社,音羽,文京區,東京都,日本。)
    郭藍遠,2003,"推力最佳化輪椅研究",博士論文,國立成功大學醫學工程研究所,台南,台灣。
    黃月珠,1999,"不同大小輪椅手推輪對上肢生物力學之效應",碩士論文,國立成功大學醫學工程研究所,台南,台灣。
    陳秋旺,2000,"肘關節復健用機器人之研究",碩士論文,國立成功大學機械工程學系,台南,台灣。
    楊境睿,2000,"脊椎損傷患者輪椅驅動之上肢生物力學分析",碩士論文,國立成功大學醫學工程研究所,台南,台灣。
    葉昊政,2004,"輪椅手推輪尺寸對肩關節的生物力學效應",碩士論文,國立成功大學醫學工程研究所,台南,台灣。

    無法下載圖示 校內:2016-09-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE