| 研究生: |
曹家文 Tsao, Chia-Wen |
|---|---|
| 論文名稱: |
可高準確計算渦輪葉片冷卻流的紊流模型之研究 A study on turbulence models for high-fidelity prediction in turbine vane cooling flows |
| 指導教授: |
陳文立
Chen, Wen-Lih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 1988 C3X葉片 、薄膜冷卻 、腎渦流 、馬蹄渦流 、CFD 、紊流模型 、ONERA M6機翼 |
| 外文關鍵詞: | Turbine vane, Film cooling, Kidney vortices, Horseshoe vortex, CFD, Turbulence model, Swept wing |
| 相關次數: | 點閱:139 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多研究顯示,平板上的薄膜冷卻流與主流的交互作用下,在冷卻孔附近會形成非對稱雙渦流(腎渦流),以及腎渦流對薄膜冷卻效果的影響。許多薄膜冷卻流的數值研究侷限在簡單的幾何模型,例如平板,或是不可壓縮流。因此,本研究使用了CD-adapco所開發的數值分析軟體STAR-CCM+來模擬分析含薄膜冷卻的1988 C3X葉片之熱傳和空氣動力,並探討薄膜冷卻流中是否存在腎渦流的現象和薄膜冷卻流對葉片的熱傳影響。紊流模型選擇了學術界和業界常使用的紊流模型(k-ω SST和v2-f),並從這兩種紊流模型中比較出較適合模擬渦輪葉片冷卻流的紊流模型。在進行1988 C3X葉片冷卻的模擬分析之前,本研究會先進行M6(ONERA M6)機翼的流場之模擬分析和驗證,藉由後掠翼表面的壓力係數和震波的高準確預測來增加使用CFD軟體的可信度。
模擬結果顯示,兩個紊流模型在無薄膜冷卻流的案例中,結果是相似的,然而綜合了數值計算時間、數值收斂性和數值預測準度,k-ω SST紊流模型的表現是較好的。因此,在含薄膜冷卻流的案例中,只使用了k-ω SST紊流模型來計算。k-ω SST紊流模型在含薄膜冷卻流的案例中的數值結果也相當吻合實驗結果,但對流熱傳係數的預測準度仍有待加強;模擬結果發現了腎渦流(kidney vortex)的現象,而腎渦流的抬升效應會將周圍的熱氣導引至薄膜冷卻流底下,使得薄膜冷卻效果下降,但若腎渦流受到了上游反渦流的影響,即可抑制腎渦流的抬升效應;模擬結果也發現,在葉片前緣的端牆附近產生了馬蹄渦流(horseshoe vortex),馬蹄渦流導致了薄膜冷卻流在葉片的前緣、壓力面和吸力面的端牆附近之薄膜冷卻效果下降。本研究也探討了薄膜冷卻流對葉片的熱傳影響,結果顯示了薄膜冷卻流在葉片降溫上有顯著的幫助。後掠翼的結果顯示,兩個紊流模型的預測結果都非常的好,結果也相當一致,若綜合了數值計算時間、數值收斂性和數值預測準度,k-ω SST紊流模型的表現仍然是比較好的。
It is well known that in turbine film cooling problems, kidney vortices cause interaction between main-stream flow and coolant. These vortices cause coolant to lift-off and flow away from the wall, thus reducing film-cooling effectiveness. Most of the previous numerical studies of film cooling were limited to simple geometries such as flat plates. There have been very few numerical studies of film cooling on turbine vanes. Therefore, this study analyzes kidney vortices in turbine vanes and tries to find suitable turbulence model for the turbine cooling problems. Two turbulence models (k-ω SST and v2-f) have been used for performance comparison. Both turbulence models were first validated on a swept wing in order to validate their accuracy, and both models returned very accurate results compared with experimental data. The results show that the performance of k-ω SST model is better than v2-f in the non-film cooling cases. In the case of film cooling, it is found that kidney vortices pose vital effects on the effectiveness of film cooling. Horseshoe vortices also play an important role to reduce the film effectiveness near the end walls of the vane. The results confirm that the film cooling is very effective to cool turbine vane.
[1] M. Suo, G. Oates, “Turbine cooling”, In aerothermodynamics of aircraft gas turbine engines, AFAPL TR 78-5, Chap. 19, pp.19-1 to 19-23, 1978.
[2] L.D. Hylton, M.S. Mihelc, E.R. Turner, D.A. Nealy, R.E. York, Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes, NASA CR-168015, 1983.
[3] E. R. Turner, M. D. Wilson, L. D. Hylton, R. M. Kaufman, Analytical and experimental evaluation of the heat transfer distribution with leading edge showerhead film cooling, NASA CR-174827, 1985.
[4] L. D. Hylton, V. Nirmalan, B. K. Sultanian, R. M. Kaufman, The effects of leading edge and downstream film cooling on turbine vane heat transfer, NASA CR-182133, 1988.
[5] Z. Wang, P. Yan, H. Huang, W. Han, Conjugate heat transfer analysis of a high pressure air-cooled gas turbine vane, Proceedings of ASME Turbo: Power for Land, Sea and Air, Vol. 4, pp. 501-508, 2010.
[6] W. D. York, J. H. Leyiek, Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane, Proceedings of ASME Turbo Expo: Power for Land, Sea and Air, Vol. 5, pp. 351-360, 2003.
[7] J. Luo, E. H. Razinsky, Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model, Journal of Turbomachinery, Vol. 129, pp. 773-781, 2007.
[8] G. A. Ledezma, G. M. Laskowski, A. K. Tolpadi, Turbulence model assessment for conjugate heat transfer in a high pressure turbine vane model, Proceedings of ASME Turbo Expo: Power for Land, Sea and Air, Vol. 4, pp. 489-499, 2008.
[9] L. Mangani, M. Cerutti, M. Maritano, M. Spel, Conjugate heat transfer analysis of NASA C3X film cooled vane with an object-oriented CFD code, Proceedings of ASME Turbo Expo: Power for Land, Sea and Air, Vol. 4, pp. 1805-1814, 2010.
[10] Y. Jiang, Q. Zheng, P. Dong, J. Yao, H. Zhang, J. Gao, Conjugate heat transfer analysis of leading edge and downstream mist-air film cooling on turbine vane, International Journal of Heat and Mass Transfer, Vol. 90, pp. 613-626, 2015.
[11] S. Sarkar, K. Das, D. Basu, Film cooling on a turbine guide vane: a numerical analysis with a multigrid technique, Proc. Instn. Mech. Engrs., Vol. 215, pp. 39-53, 2001.
[12] E. J. Hall, D. A. Topp, R. A. Delaney, Aerodynamics/heat transfer analysis of discrete site film-cooled turbine airfoils, AIAA 94-3070, 1994.
[13] B. A. Haven, M. Kurosaka, Kidney and anti-kidney vortices in crossflow jets, J. Fluid Mech., Vol. 352, pp. 27-64, 1997.
[14] D. Bohn, J. Ren, K. Kusterer, Conjugate heat transfer analysis for film cooling configurations with different hole geometries, Proceedings of ASME Turbo Expo: Power for Land, Sea and Air, Vol. 5, pp. 247-256, 2003.
[15] T. W. Repko, A. C. Nix, C. Uysal, J. D. Heidmann, Numerical study on the effects of freestream turbulence on antivortex film cooling design at high blowing ratio, Journal of Thermal Science and Engineering Applications, Vol. 9, pp. 011013-1 to 011013-12, 2017.
[16] J. D. Heidmann, S. Ekkad, A novel antivortex turbine film-cooling hole concept, Journal of Turbomachinery, Vol. 130, pp. 031020-1 to 031020-9, 2008.
[17] Z. Chi, J. Ren, H. Jiang, S. Zang, Geometrical optimization and experimental validation of a tripod film cooling hole with asymmetric side holes, Journal of Heat Transfer, Vol. 138, pp. 061701-1 to 061701-12, 2016.
[18] S. Khajehhasani, B. A. Jubran, Numerical assessment of the film cooling through novel sister-shaped single-hole schemes, Numerical Heat Transfer, Part A, Vol. 67, pp. 414-435, 2015.
[19] W. P. Jones, B. E. Launder, The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer, Vol. 15, pp. 301-314, 1972.
[20] D. C. Wilcox, Formulation of the turbulence model revisited, AIAA Journal, Vol. 46, pp. 2823-2838, 2008.
[21] F. R. Menter, Zonal two equation turbulence models for aerodynamics flows, AIAA 93-2906, 1993.
[22] P. A. Durbin, Near-wall turbulence closure modeling without “damping functions”, Theoretical and Computational Fluid Dynamics, Vol. 3, pp. 1-13, 1991.
[23] P. A. Durbin, Separated flow computations with the model, AIAA Journal, Vol. 33, pp. 659-664, 1995.
[24] F. S. Lien, P. A. Durbin, Non-linear modeling with application to high-lift, Proceedings of the Summer Program, 1996.
[25] F. S. Lien, G. Kalitzin, P. A. Durbin, RANS modeling for compressible and transitional flows, Proceedings of the Summer Program, 1998.
[26] L. Davidson, P. V. Nielsen, A. Sveningsson, Modifications of the model for computing the flow in a 3D wall jet, Journal of Turbulence, Heat and Mass Transfer, Vol. 4, pp. 577-584, 2003.
[27] V. Schmitt, F. Charpin, “Pressure distributions on the ONERA-M6-wing at transonic Mach numbers”, In experimental data base for computer program assessment, Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, 1979.
[28] H. H. Teng, Design and numerical study on aerodynamics performance for F16 leading edge extension, Department of Aerodynamics and Astronautics, NCKU, 2018.
[29] G. A. Ledezma, G. M. Laskowski, A. K. Tolpadi, Turbulence model assessment for conjugate heat transfer in a high pressure turbine vane model, Proceedings of ASME Turbo Expo: Power for Land, Sea and Air, Vol. 4, pp. 489-499, 2008.
[30] G. M. Laskowski, G. A. Ledezma, A. K. Tolpadi, M. C. Ostrowski, CFD simulations and conjugate heat transfer analysis of a high pressure turbine vane utilizing different cooling configurations, ISROMAC12-20065, 2008.