| 研究生: |
邱建鈞 Chiu, Jian-Jyun |
|---|---|
| 論文名稱: |
混合拉氏轉換法搭配曲線擬合法探討非線性熱遲滯現象及其潛熱效應 Thermal Lagging Behavior With The Effect Of Latent Heat By Using Hybird Laplace Transfer And Curve-Fitting Methods |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 熱遲滯現象 、混合拉氏轉換法 、曲線擬合法 |
| 外文關鍵詞: | thermal lagging behavior, hybrid Laplace transfer method, curve-fitting scheme |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科技發展日新月異,為了解決工程應用上所遭遇的微尺度熱傳問題,必須仰賴巨觀的傅立葉熱傳現象之基礎,進而解析微觀的非傅立葉熱傳行為,最終才能夠探討實際的工程問題。
本文主要目的為使用混合拉氏轉換法,並適時搭配曲線擬合法分析非傅立葉熱傳問題,若熱傳過程中涉及相變化行為,則運用溫度回復法處理潛熱效應。
由於∂θ(δ,0)/∂β 為以混合拉氏轉換法進行時間迭代模擬非傅立葉熱傳問題-熱波模式結果震盪的主因,因此本文藉由研究修正式時間迭代法所得之∂θ(δ,0)/∂β數值,並且應用曲線擬合法尋找其數學關係,最終歸納而得另一種時間迭代方法,稱為擬合式時間迭代法,能夠有效模擬非傅立葉熱傳問題-熱波模式,進而分析其潛熱效應之影響;∂^2 θ(δ,0)/∂δ^2為混合拉氏轉換法進行時間迭代模擬非傅立葉熱傳問題-雙相差模式結果不穩定的主因,故本文同樣藉由研究修正式時間迭代法所求得之∂^2 θ(δ,0)/∂δ^2數值,並應用曲線擬合法歸納而得其數學關係,最終同樣運用擬合式時間迭代法有效模擬非傅立葉熱傳問題-雙相差模式,且探討其相變化行為。
Technology development advances rapidly day by day. To solve micro-scale heat transfer problems encountered in engineering applications is necessarily based on the macroscopic Fourier heat transfer phenomena. With the basis, the microscopic non-Fourier heat transfer problems would be analyzed effectively and therefore the actual heat transfer problems in engineering could be studied. The main purpose of this paper is using the hybrid Laplace transform method with curve fitting techniques to analyze the non-Fourier heat transfer problems. If the heat transfer process involves phase-change, the temperature recovery method is applied to handle the effect of latent-heat release.
∂θ(δ,0)/∂β is the main reason causing the numerical oscillating results in solving CV wave models by using the hybrid Laplace transform method and the time marching scheme. In the study, the oscillating problem is solved by developing a curve-fitting formula to calculate ∂θ(δ,0)/∂β, which is derived from the modified time-marching method of the previous works. The developed method is called the curve-fitting time marching scheme. Afterwards, the CV model with the release of latent heat could be analyzed numerically.
∂^2 θ(δ,0)/∂δ^2 is the primary cause leading to the unstable numerical results in solving dual-phase models. Similarly, a curve-fitting formula is obtained to calculate ∂^2 θ(δ,0)/∂δ^2, which could help to solve the dual-phase model effectively. Subsequently, the dual-phase model with phase change could be investigated numerically.
[1] J. B. J. Fourier, Théorie analytique de la chaleur: Didot, 1822.
[2] M. Kaganov, I. Lifshitz, and L. Tanatarov, "Relaxation between electrons and the crystalline lattice," Sov. Phys. JETP, vol. 4, pp. 173-178, 1957.
[3] S. Anisimov and B. Kapeliovich, "Electron emission from metal surfaces exposed to ultrashort laser pulses," Zh. Eksp. Teor. Fiz, vol. 66, pp. 375-7, 1974.
[4] T. Qiu and C. Tien, "Heat transfer mechanisms during short-pulse laser heating of metals," Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C);(United States), vol. 115, pp. 835-841, 1993.
[5] R. A. Guyer and J. Krumhansl, "Solution of the linearized phonon Boltzmann equation," Physical Review, vol. 148, pp. 766-778, 1966.
[6] A. Majumdar, "Microscale heat conduction in dielectric thin films," ASME Transactions Journal of Heat Transfer, vol. 115, pp. 7-16, 1993.
[7] D. D. Joseph and L. Preziosi, "Heat waves," Reviews of Modern Physics, vol. 61, pp. 41-73, 1989.
[8] G. Caviglia, A. Morro, and B. Straughan, "Thermoelasticity at cryogenic temperatures," International journal of non-linear mechanics, vol. 27, pp. 251-263, 1992.
[9] C. Cattaneo, "A form of heat conduction equation which eliminates the paradox of instantaneous propagation," Compte Rendus, vol. 247, pp. 431-433, 1958.
[10] P. Vernotte, "Les paradoxes de la théorie continue de l’équation de la chaleur," CR Acad. Sci, vol. 246, pp. 3154-3155, 1958.
[11] P. Vernotte, "Some possible complications in the phenomena of thermal conduction," Compte Rendus, vol. 252, pp. 2190-2191, 1961.
[12] G. F. Carey and M. Tsai, "Hyperbolic Heat Transfer With Reflection," Numerical Heat Transfer, vol. 5, pp. 309-327, 1982.
[13] D. E. Glass, M. N. Özişik, D. S. McRae, and B. Vick, "On The Numerical Solution Of Hyperbolic Heat Conduction," Numerical Heat Transfer, vol. 8, pp. 497-504, 1985.
[14] K. K. Tamma and S. B. Railkar, "Specially Tailored Trans Finite-Element Formulations For Hyperbolic Heat Conduction Involving Non-Fourier Effects," Numerical Heat Transfer, Part B: Fundamentals, vol. 15, pp. 211-226, 1989.
[15] T. DA YU, "Experimental support for the lagging behavior in heat propagation," Journal of thermophysics and heat transfer, vol. 9, pp. 686-693, 1995.
[16] D. Y. Tzou, "A unified field approach for heat conduction from macro-to micro-scales," Journal of heat transfer, vol. 117, pp. 8-16, 1995.
[17] D. Y. Tzou, "The generalized lagging response in small-scale and high-rate heating," International Journal of Heat and Mass Transfer, vol. 38, pp. 3231-3240, 1995.
[18] D. W. Tang and N. Araki, "Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses," International Journal of Heat and Mass Transfer, vol. 42, pp. 855-860, 1999.
[19] 陳良彰, "熱遲滯現象之數值分析," 碩士, 工程科學系, 國立成功大學, 台灣, 2007.
[20] M. A. Al-Nimr and Mohammad K. Alkam, "Overshooting Phenomenon in the Hyperbolic Microscopic Heat Conduction Model," International Journal of Thermophysics, vol. 24, pp. 577-583, 2002.
[21] M. Al-Nimr and M. K. Alkam, "Overshooting phenomenon in the hyperbolic microscopic heat conduction model," International Journal of Thermophysics, vol. 24, pp. 577-583, 2003.
[22] F. Rizzo and D. Shippy, "A method of solution for certain problems of transient heat conduction," AIAA Journal, vol. 8, pp. 2004-2009, 1970.
[23] P. J. Antaki, "Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux," International journal of heat and mass transfer, vol. 41, pp. 2253-2258, 1998.
[24] G. Honig and U. Hirdes, "A Method for the Numerical Inversion of Laplace Transforms " Journal of Computational and Applied Mathematics, vol. 10, pp. 112-132, 1984.
[25] 陳寒濤, "混合數值分析法在暫態熱傳上之應用," 博士, 機械工程學系, 國立成功大學, 台灣, 1987.
[26] H. T. Chen and J. Y. Lin, "Application of the Laplace transform to one-dimensional non-linear transient heat conduction in hollow cylinders," Communications in Applied Numerical Methods vol. 7, pp. 241-252, 1991.
[27] H. T. Chen and J. Y. Lin, "Application of the hybrid method to transient heat conduction in one-dimensional composite layers " Computers & Structures, vol. 39, pp. 451-458, 1991.
[28] H. T. Chen and J. Y. Lin, "Hybrid Laplace transform technique for non-linear transient thermal problems " International Journal of Heat and Mass Transfer, vol. 34, pp. 1301-1308, 1991.
[29] H. T. Chen and J. Y. Lin, "Application of the Laplace transform to nonlinear transient problems," Applied Mathematical Modelling, vol. 15, pp. 144-151, 1991.
[30] 黃俊誠, "混合拉氏轉換與數值分析法在傅立葉與非傅立葉熱傳問題之研究," 碩士, 工程科學系, 國立成功大學, 台灣, 2008.
[31] 郭晉凱, "混合拉氏轉換法求解相變化熱傳問題," 碩士, 工程科學系, 國立成功大學, 台灣, 2009.
[32] 張智超, "混合拉氏轉換法求解傅立葉和非傅立葉熱傳導問題," 碩士, 工程科學系, 國立成功大學, 台灣, 2010.
[33] 曾楷倫, "混合拉氏轉換法求解非傅立葉相變化熱傳問題之研究," 碩士, 工程科學系, 國立成功大學, 台灣, 2011.
[34] D. Y. Tzou, M. N. Ozisik, and R. J. Chiffelle, "The Lattice Temperature In The Microscopic Two-Step Model," ASME Journal of Heat Transfer, vol. 116, pp. 1034-1038, 1994.
[35] 盧峻德, "混合拉氏轉換法求解雙曲線相變化熱傳問題之研究," 碩士, 工程科學系, 國立成功大學, 台灣, 2012.
[36] 翁銘彥, "砷化鎵長晶之模式分析," 碩士, 工程科學系, 國立成功大學, 台灣, 2003.
[37] J. A. Dantzig, "Modelling liquid–solid phase changes with melt convection," International Journal for Numerical Methods in Engineering, vol. 28, pp. 1769-1785, 1989.
[38] J. S. Hsiao, "An Efficient Algorithm For Finite-Difference Analyses of Heat Transfer with Melting and Solidification," Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, vol. 8, pp. 653-666, 1985.
[39] A. W. Date, "A Strong Enthalpy Formulation for the Stefan Problem," International Journal of Heat and Mass Transfer, vol. 34, pp. 2231-2235, 1991.
[40] V. R. Voller and C. R. Swaminathan, "General Source-Based Method for Solidification Phase Change," Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, vol. 19, pp. 175-189, 1991.
[41] T. C. Tszeng, Y.T. Im, and S. Kobayashi, "Thermal Analysis of Solidification by the Temperature Recovery Method " International Journal of Machine Tools and Manufacture, vol. 29, pp. 107-120, 1989.
[42] D. Y. Tzou and Y. Zhang, "An Analytical Study on the Fast-transient Process in Small Scales " International Journal of Engineering Science, vol. 33, pp. 1449-1463, 1995.
[43] D. Y. Tzou, Macro-to micro-scale heat transfer: the lagging behavior: Hemisphere Pub, 1997.
[44] Y. C. Liu and L. S. Chao, "Modified effective specific heat method of solidification problems," Materials transactions, vol. 47, pp. 2737-2744, 2006.
[45] D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational fluid mechanics and heat transfer. United States: Hemisphere Publishing,New York, NY, 1984.
[46] 林傑毓, "解析暫態熱傳問題之新數值方法," 博士, 機械工程學系, 國立成功大學, 台灣, 1994.