簡易檢索 / 詳目顯示

研究生: 張文銓
Zhang, Wen-Quan
論文名稱: 鎢碳鍍膜之機械性質和磨潤性能研究
Mechanical and tribological performance of carbon-containing tungsten coatings
指導教授: 蘇演良
Su, Yean-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 136
中文關鍵詞: 磨潤鍍膜
外文關鍵詞: Tribological, Ti, W, Coating
相關次數: 點閱:117下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用非平衡磁控濺鍍法,利用漸進層的方式,於高速鋼底材上鍍一層鎢碳薄膜,並探討此鍍膜於熱處理前後的磨潤性質、機械性質與切削性質。實驗主要分為三階段:第一階段以甲烷當做碳源,分析不同甲烷流量時對於鍍膜性質的影響;第二階段會加入碳靶當做不同的碳源,分析其對鍍膜的變化;第三階段探討鍍膜於不同溫度(500℃和600℃)持溫一小時後,對其性質的影響。最後選用較佳的鍍膜進行乾車削與印刷電路板微鑽針試驗,以瞭解實際上鍍膜披覆刀具在工業上的應用。
    實驗結果得知,甲烷流量越高,鍍膜的硬度也越高,當甲烷流量達到10 sccm時,鍍層硬度最高,奈米硬度可達28.7 GPa(荷重為10mN),微硬度Hk0.25為2630,使用甲烷流量6 sccm的鍍層磨耗性質最佳,不過鍍膜的附著性也會隨著甲烷的增加而變差。在加入碳靶之後,鍍膜的硬度會降低,但能改善其附著性與磨耗性。經過500℃和600℃持溫一小時的熱處理後,鍍膜硬度會大幅下降,且容易剝落,表示W-C系列的鍍膜不適合熱處理。由實際的切削結果得知,當甲烷流量為6 sccm且添加碳靶的鍍層能夠有效降低車刀及鑽針磨耗量,與未鍍膜前的刀具相比,車刀刀腹磨耗量降低了59 %,微鑽針刀角磨耗量降低了56 %。

    The W-C coatings were deposited on the high speed substrate with progressive approach by closed field unbalanced magnetron sputtering system, The mechanical and tribological properties and cutting performance of this coating before and after heat treatment were explored. This experiment was divided into three stages. In first stage, methane was used as carbon source, the coating properties with different methane flow rate were analyzed. In second stage, a carbon target was added as another carbon source, to study the influence of carbon source on coating. In third stage will discuss the mechanical and tribological properties of these coatings after one-hour heat treatment in different temperature (500℃and 600℃). Finally, we will choose the optimal coating to deposit on cutting tools and micro-drills to test under actual machining.
    The results show that the hardness increases with increasing methane flow rate. The hardest coating at the nano hardness of 28.7 GPa and the micro hardness of Hk0.25 2630 were performed by the coating which use the methane flow rate is 10 sccm, the best wear resistance were performed by the coating which use the methane flow rate is 6 sccm. But the adhesion of coating is poor with increasing methane flow rate. After adding the carbon target, the coatings hardness will become lower, but it can improve the adhesion and wear resistance. The hardness and tribological properties of W-C coatings decreased after 500℃and 600℃ one-hour heat treatment.
    In turning and micro-drilling tests, the coating use 6 sccm methane flow rate and carbon target deposited on cutting tools and micro-drills can be reduced the wear rate about 59 % and 56 %, respectively.

    考試合格證明 I 摘 要 II 誌 謝 IV 總 目 錄 V 表 目 錄 VII 圖 目 錄 VIII 附 錄 目 錄 X 第一章 緒論 1 第二章 文獻回顧 2 2-1 鍍膜性質 2 2-1-1 鎢與氧化鎢的性質 2 2-1-2 碳化鎢鍍膜的性質 3 第三章 實驗方法與步驟 4 3-1實驗目的 4 3-2實驗流程 4 3-3鍍膜製作與實驗方法 6 3-3-1濺鍍參數與鍍膜安排 6 3-3-2實驗材料 8 3-3-3成分分析 8 3-3-4結構分析 9 3-3-5硬度實驗 9 3-3-6附著性實驗 10 3-3-7磨耗實驗 11 3-3-8氧化實驗 12 3-3-9車削實驗 12 3-3-10鑽削實驗 13 3-3-11表面、斷面及磨耗型態分析 16 3-4實驗設備 16 第四章 鍍層實驗結果與討論 18 4-1 甲烷流量對鍍膜的影響 18 4-1-1 鍍膜基本性質 18 4-1-2 鍍層磨耗實驗 29 4-1-3 鍍膜的附著性 31 4-1-4 小結 34 4-2 熱處理對鍍膜的影響 34 4-2-1 鍍膜基本性質 34 4-2-2 熱處理後鍍層磨耗實驗 49 4-2-3 熱處理後鍍膜的附著性 53 4-2-4 小結 55 4-3 乾車削實驗 56 4-4 PCB微鑽削實驗 58 第五章 結論與未來展望 60 5-1結論 60 5-2 未來展望 61 第六章 參考文獻 62

    1.B. Window, "Recent advances in sputter deposition", Surface and Coatings Technology, Vol.71 (1995) p.93-97
    2.T. Fu, Z.F. Zhou, K.Y. Li and Y.G. Shen, "Structure, stress and hardness of sputter deposited nanocomposite W-Si-N coatings", Surface and Coatings Technology, Vol.200 (2005) p.2525-2530
    3.S. Veprek and S. Reiprich, "A concept for the design of novel superhard coatings", Thin Solid Films, Vol. 268 (1995) P.64-71
    4.N.R. Moody, T.E. Buchheit, B.L. Boyce, T.M. Mayer and S.M. George, "Mechanical Properties Derived From Nanostructuring Materials", Materials Research Society Symposium Proceedings, Vol.778 (2003) p.43
    5.B. Trindade, M.T. Vieira and E. Bauer-Grosse, "Amorphous phase forming ability in (W-C)-based sputtered films", Vol.46 (1998) p.1731-1739
    6.Y. Liu, M. Gubisch, T. Haensel, L. Spiess and J.A. Schaefer, "Evaluation of the friction of WC/DLC solid lubricating films in vacuum", Tribology International, Vol.39 (2006) p.1584-1590
    7.T. Polcar, N.M.G. Parreira and A. Cavaleiro, "Tungsten oxide with different oxygen contents: Sliding properties", Vacuum, Vol.81 (2007) p.1426-1429
    8.A. Nossa, A. Cavaleiro, N.J.M. Carvalho, B.J. Kooi and J.Th.M. De Hosson, "On the microstructure of tungsten disulfide films alloyed with carbon and nitrogen", Thin Solid Films, Vol.484 (2005) p.389-395
    9.B. Trindade and M.T. Vieira, "Crystallisation kinetics of amorphous W-Co-C sputtered films", Vol.322 (1998) p.68-73
    10.P.N. Silva, J.P. Dias and A. Cavaleiro, "Tribological behavior of W-Ti-N sputtered thin films", Surface and Coatings Technology, Vol.200 (2005) p.186-191
    11.E. Harry, A. Rouzaud, P. Juliet, Y.Pauleau and M. Ignat, "Failure and adhesion characterization of tungsten –carbon single layers, multilayered and graded coatings", Surface and Coatings Technology, Vol.116-119 (1999) p.172-175
    12.N.M.G. Parreira, N.J.M. Carvalho, F. Vaz and A. Cavaleiro, "Mechanical evaluation of unbiased W-O-N coatings deposited by d.c. reactive magnetron sputtering", Surface and Coatings Technology, Vol.200 (2006) p.6511-6516
    13.R.E. Smallwood, ASTM Committee B-10 on Reactive and Refractory Metals and Alloys, Philadephia, PA, (1982) p.82-104
    14.A.G. Souza Filho, J. Mendes Filho, V.N. Freire, A.P. Ayala, J.M. Sasaki, P.T.C. Freire, F.E.A. Melo, J.F. Juliao and U.U. Gomes, "Phase transition in WO3 microcrystals obtained by sintering process", J. Raman Spectrosc., Vol.32 (2001) p.695
    15.E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin and J. Purans, "Low-Temperature Polymorphism in Tungsten Trioxide Powders and Its Dependence on Mechanical Treatments", J. Solid State Chem., Vol.143 (1999) p.24-32
    16.D. Greenwooda, S. C. Moulzolfa, P. J. Blaub and R. J. Lada, "The influence of microstructure on tribological properties of WO3 thin films", Wear, Vol.232 (1999) p.84-90
    17.N.M.G. Parreira, N.J.M. Carvalho, A. Cavaleiro and Synthesis, "Structural and mechanical characterization of sputtered tungsten oxide coatings", Thin Solid Films, Vol.510 (2006) p.191-196
    18.P. Harlin, P. Carlsson, U. Bexell and M. Olsson, "Influence of surface roughness of PVD coatings on tribological performance in sliding contacts", Surface and Coatings Technology, Vol.201 (2006) p.4253-4259
    19.C. Rincón, J. romero, J. Esteve, E. Martı́nez and A. Lousa, "Effects of carbon incorporation in tungsten carbide films deposited by r.f. magnetron sputtering: single layers and multilayers", Surface and Coatings Technology, Vol.163-164 (2003) p.386-391
    20.W.A. Weimer, "Carbide, Nitride and Boride Materials—Synthesis and Processing", Chapman & Hall, London (1997)
    21.E. Marui, H. Endo and A. Ohira, "Wear test of cemented tungsten carbide at high atmospheric temperature (400°C) ", Tribology Letters, Vol.8 (2000) p.139-145
    22.B.M. Kramer and P.K. Judd, "Computational design of wear coatings", Journal of Vacuum Science and Technology A, Vol.3 (1985) p.2439-2444
    23.J.E. Krzanowski and J.L. Endrion, "The effects of substrate bias on phase stalility and propertied of sputter-deposited tungsten carbide", Materials Letters, Vol.58 (2004) p.3437-3440
    24.B.R. Pujada, F.D. Tichelaar and G.C.A.M. Janssen, "Hardness of and stress in tungsten carbide-diamond like carbon multilayer coatings", Surface and Coatings Technology, Vol.203 (2008) p.562-565
    25.M. Gubisch, Y. Liu, L. Spiess, H. Romanus, S. Krischok, G. Ecke, J.A. Schaefer and Ch. Knedlik, "Nanoscale multilayer WC/C coatings developed for nanopositioning: Part I. Microstructures and mechanical propertied", Thin Solid Films, Vol.488 (2005) p.132-139
    26.O. Wänstrand, M. Larsson and P. Hedenqvist, "Mechanical and tribological evaluation of PVD WC/C coatings", Surface and Coatings Technology, Vol.111 (1999) p.247-254
    27.C. Strondl, N.M. Carvalho, J.Th.M. De Hosson and T.G. Krug, "Influence of energetic ion bombardment on W-C:H coatings deposited with W and WC targets", Surface and Coatings Technology, Vol.200 (2005) p.1142-1146
    28.B.R. Pujada and G.C.A.M. Janssen, "Density, stress, hardness and reduced Young's modulus of W–C:H coatings", Surface and Coatings Technology, Vol.201 (2006) p.4284-4288
    29.C. Rebholz, J.M Schneider, A. Leyland and A. Matthews, "Wear behaviour of carbon-containing tungsten coatings prepared by reactive magnetron sputtering", Surface and Coatings Technology, Vol.112 (1999) p. 85-90
    30.J. Esteve, G. Zambrano, C. Rincon, E. Martinez, H. Galindo and P. Prieto, "Mechanical and tribological properties of tungsten carbide sputtered coatings", Thin Solid Films, Vol.373 (2000) p.282-286
    31.K. Abdelouahdi, C. Sant, C. Legrand-Buscema, P. Aubert, J. Perrière, G. Renou and Ph. Houdy, "Microstructural and mechanical investigations of tungsten carbide films deposited by reactive RF sputtering", Surface and Coatings Technology, Vol.200 (2006) p.6469-6473
    32.E. Harry, A. Rouzaud, P. Juliet and Y. Pauleau, "General properties and scratch adhesion characterization of carbon-containing tungsten films", Surface and Coatings Technology, Vol.116-119 (1999) p.81-85
    33.Y. Pauleau, Ph. Gouy-Pailler and S. Païdassi, "Structure and mechanical properties of hard W-C coatings deposited by reactive magnetron sputtering", Surface and Coatings Technology, Vol.54-55 (1992) p.324-328
    34.S.J. Park, K.R. Lee, D.H. Ko and K.Y. Eun, "Microstructure and mechanical properties of WC-C nanocomposite films", Diamond and Related Materials, Vol.11 (2002) p.1747-1752
    35.E. Harry, A. Rouzaud, P. Juliet and Y. Pauleau, "Adhesion and failure mechanisms of tungsten-carbon containing multilayered and graded coatings subjected to scratch tests", Thin Solid Films, Vol.342 (1999) p.207-213
    36.A. Czyzniewski, "Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings", Thin Solid Films, Vol.433 (2003) p.180-185
    37.K. Fuchs, P. Rodhamer, E. Bertel, F.P. Netzer and E. Gornik, "Reactive and non-reactive high rate sputter deposition of tungsten carbide", Thin Solid Films, Vol.151 (1987) p.383-395
    38.Ramalho, A. Cavaleiro, A.S. Miranda and M.T. Vieira, "Failure modes observed on worn surfaces of W-C-Co sputtered coatings", Surface and Coatings Technology, Vol.62 (1993) p.536-542
    39.P.K. Srivastava, V.D. Vankar and K.L. Chopra, "Mechanical properties of R.F. magnetron sputtered W-C films on stainless steel", Thin Solid Films, Vol.161 (1988) p.107-116
    40.Ph. Gouy‐Pailler and Y. Pauleau, "Tungsten and tungsten-carbon thin films deposited by magnetron sputtering", Journal of Vacuum Science and Technology A, Vol.11 (1993) p.96-102
    41.T. Arai, H. Fujita and M. Watanabe, "Evaluation of adhesion strength of thin hard coatings", Thin Solid Films, Vol. 154 (1987) p.387-401
    42.A. Czyzniewski, "Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings", Thin Solid Films, Vol.433 (2003) p.180-185
    43.J.M. Chappe, N. Martin, G. Terwagne, J. Lintymer and J. Gavoille, "Water as Reactive Gas to Prepare Titanium Oxynitride Thin Films by Reactive", Thin Solid Films, Vol.440 (2003) p.66-73
    44.S.Y. Lee, G.S. Kim and J.H. Hahn, "Effect of the Cr content on the mechanical properties of nanostructured TiN/CrN coatings", Surface and Coatings Technology, Vol.177-178 (2004) p.426-433
    45.T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders and I.G. Brown, "Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks", Materials Research Society Symposium Proceedings, Vol.383 (1995) p.447-452
    46.H. Zhang and D.Y. Li, "Effects of sputtering condition on tribological properties of tungsten coatings", Wear, Vol.255 (2003) p.924-932
    47.F.L. Freire Jr., G. Mariotto, C.A. Achete and D.F. Franceschini, "Amorphous hydrogenated carbon nitride films obtained by plasma-enhanced chemical vapor deposition", Surface and Coatings Technology, Vol.74-75 (1995) p.382-386

    下載圖示 校內:2014-06-28公開
    校外:2014-06-28公開
    QR CODE