簡易檢索 / 詳目顯示

研究生: 楊捷宇
Yang, Jie-Yu
論文名稱: 銅陽極泥中鈀鉑銠金屬再生之研究
Recovery of Palladium, Platinum and Rhodium from Copper Anode Slime
指導教授: 陳偉聖
Chen, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 銅陽極泥車用觸媒溶媒萃取資源循環
外文關鍵詞: Copper anode slime, Autocatalyst, Solvent extraction, Recovery
相關次數: 點閱:176下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為針對含鈀鉑銠銅陽極泥中鈀、鉑、銠金屬資源的再生技術開發,
    實驗採用濕法冶金技術進行金屬的回收,主要步驟可以分為酸溶浸出、分離純化與金屬析出,並可將最終金屬產品回用到產品端。
    首先對含鈀鉑銠銅陽極泥進行酸溶浸出,分為選擇性溶出雜質金屬以及目
    標金屬溶出兩個階段。第一階段之選擇性溶出雜質金屬以硫酸加壓浸出對含鈀鉑銠銅陽極泥中雜質進行溶出,探討各項酸溶浸出之實驗參數以得到最佳浸漬條件,雜質元素-銅、磷、鐵之溶出率分別達到99.3%、86.5%、99.9%,而後對經第一階段處理之渣相進行第二階段之目標金屬溶出,並以鹽酸添加過氧化氫對含鈀鉑銠銅陽極泥中目標金屬進行溶出探討,探討各項酸溶浸出之實驗參數以得到最佳浸漬條件,鈀、鉑、銠之溶出率分別達到98.1%、96.3%、89.8%。完成目標金屬溶出後對所得之浸出液進行鈀、鉑、銠的分離純化,在本研究中使用溶媒萃取技術,對各項實驗參數進行探討,在萃取階段中使用三正辛胺萃取浸出液中之鈀與鉑,將銠留置於水相後對有機相中鈀與鉑進行選擇性反萃,反萃階段中分別以硫脲對鈀及硫氰酸鈉對鉑進行反萃,實驗結果顯示,在萃取階段鈀鉑一次萃取率大於99%而銠則約10%,而在後續反萃階段,一次反萃效率鈀與鉑也可達99%與90%以上。最後對分離純化後之各別金屬水相進行金屬產品析出之研究,此部分使用化學沉澱法以聯氨水合物對水相之鈀、鉑、銠進行金屬產品的析出,藉著對酸鹼值與藥劑用量進行調整,將水相中之目標金屬還原沉澱為金屬還原態產品。最終藉由儀器分析產品純度,鈀、鉑、銠均可達99%以上。

    This study is focused on the recovery of Palladium, Platinum, and Rhodium from Copper Anode Slime by hydrometallurgy method and can be divided into three parts: acid leaching part, separation part and recovery part. In the acid leaching part, impurities such as Cu, P, and Fe are removed by H2SO4 first and then target metals such as Pd, Pt, and Rh are dissolved by the mixture of HCl and H2O2. In the separation part, Pd, Pt, and Rh in the leaching liquor of target metals dissolving are separated by solvent extraction. Trioctylamine is used to extract Pd and Pt from the organic phase, and thiourea and sodium thiocyanate are used to strip Pd and Pt respectively to the aqueous phase. In the recovery part, Pd, Pt, and Rh in the aqueous phase are recovered by precipitation with hydrazine monohydrate. Finally, metal Pd, Pt, and Rh are obtained in this study. With the optimum condition, the purity of the metal Pd, Pt, and Rh are over 99% and the recovery of Pd, Pt, and Rh are 95.27%, 94.21%, and 71.03% respectively.

    中文摘要 I Extended Abstract II 致謝 X 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2.1 含鈀鉑銠銅陽極泥特性概述 4 2.1.1 車用觸媒轉換器特性概述 4 2.1.2 銅陽極泥特性概述 5 2.1.3 鈀鉑銠之性質及資源現況 6 2.2 資源化技術理論基礎 7 2.2.1 火法冶金 7 2.2.2 濕法冶金 8 2.2.3 金屬分離純化理論基礎 10 2.3 銅陽極泥之資源化現況 16 2.4 鈀、鉑、銠金屬之資源化技術 17 第三章 研究方法與步驟 18 3.1 研究材料 18 3.2 研究架構與流程 19 3.2.1 研究架構 19 3.2.2 研究流程 20 3.3 實驗設備與藥品 24 3.3.1 實驗設備 24 3.3.2 實驗藥品 26 第四章 結果與討論 27 4.1 含鈀鉑銠銅陽極泥特性分析 27 4.1.1 化學成分分析 27 4.1.2 表面特性分析 28 4.1.3 粉末結晶相分析 29 4.2 含鈀鉑銠銅陽極泥酸溶浸漬 30 4.2.1 雜質元素選擇性溶出 32 4.2.2 目標金屬溶出 38 4.2.3 含鈀鉑銠銅陽極泥酸溶浸漬小結 44 4.3 鈀、鉑、銠金屬分離純化 46 4.3.1 溶媒萃取 46 4.3.2 溶媒萃取小結 57 4.4 鈀、鉑、銠金屬產品析出 59 4.4.1 化學沉澱法析出鈀鉑銠金屬 59 4.4.2 金屬產品特性分析 60 第五章 結論 63 5.1 結論 63 5.2 建議 64 參考文獻 66

    [1]Mudd, Gavin M., Simon M.Jowitt, and Timothy T.Werner.,“Global Platinum Group Element Resources, Reserves and Mining – A Critical Assessment.”, Science of the Total Environment, 622–623, 614-625, 2018.
    [2]JM, PGM Market Report February 2019, Johnson Matthey plc (JM), Hertfordshire, UK, 2019.
    [3]Shams, K, M R Beiggy, and A Gholamipour Shirazi., “Platinum Recovery from a Spent Industrial Dehydrogenation Catalyst Using Cyanide Leaching Followed by Ion Exchange.”, Applied Catalysis A: General, 258 (2), 227-234, 2004.
    [4]E Kizilaslan, S Aktas, and M K Sesen., “Towards environmentally safe recovery of platinum from scrap automotive catalytic converters”, Turk. J. Eng, 33, 83-90, 2004.
    [5]Jimenez de Aberasturi, D, RPinedo, IRuiz de Larramendi, J IRuiz de Larramendi, and T Rojo., “Recovery by Hydrometallurgical Extraction of the Platinum-Group Metals from Car Catalytic Converters.”, Minerals Engineering, 24 (6), 505-513, 2011.
    [6]Patel, Anant, and Richard Dawson., “Recovery of Platinum Group Metal Value via Potassium Iodide Leaching.”, Hydrometallurgy 157, 219-225, 2015.
    [7]Suoranta, Terhi, Oihane Zugazua, Matti Niemelä, and Paavo Perämäki., “Recovery of Palladium, Platinum, Rhodium and Ruthenium from Catalyst Materials Using Microwave-Assisted Leaching and Cloud Point Extraction.”, Hydrometallurgy, 154, 56-62, 2015.
    [8]Trinh, Ha Bich, Jae ChunLee, Rajiv R.Srivastava, SookyungKim, and SadiaIlyas., “Eco-Threat Minimization in HCl Leaching of PGMs from Spent Automobile Catalysts by Formic Acid Prereduction.”, ACS Sustainable Chemistry and Engineering, 5 (8), 7302-7309, 2017.
    [9]Kondo, Yasuo, and Masumitsu Kubota., “Precipitation Behavior of Platinum Group Metals from Simulated High Level Liquid Waste in Sequential Denitration Process.”, Journal of Nuclear Science and Technology, 29 (2), 140-148, 1992.
    [10]Mulwanda, James, and Christie Dorfling., “Recovery of Dissolved Platinum Group Metals from Copper Sulphate Leach Solutions by Precipitation.”, Minerals Engineering, 80, 50-56, 2015.
    [11]Shafiqul Alam, M, and KatsutoshiInoue., “Extraction of Rhodium from Other Platinum Group Metals with Kelex 100 from Chloride Media Containing Tin.”, Hydrometallurgy, 46 (3), 373-382, 1997.
    [12]Sun, Panpan, Myungho Lee, and Manseung Lee., “Separation of Rh(III) from the Mixed Chloride Solutions Containing Pt(IV) and Pd(II) by Extraction with Alamine336.”, Bulletin of the Korean Chemical Society, 31 (7), 1945-1950, 2010.
    [13]Swain, Basudev, Jinki Jeong, Soo-kyoung Kim, and Jae-chun Lee., “Separation of Platinum and Palladium from Chloride Solution by Solvent Extraction Using Alamine 300.”, Hydrometallurgy, 104 (1), 1-7, 2010.
    [14]Sun, P. P., and M. S. Lee., “Separation of Pt(IV) and Pd(II) from the Loaded Alamine 336 by Stripping.”, Hydrometallurgy, 109 (1–2), 181-184, 2011.
    [15]Jaree, Attasak, and Nuttakhun Khunphakdee., “Separation of Concentrated Platinum(IV) and Rhodium(III) in Acidic Chloride Solution via Liquid–Liquid Extraction Using Tri-Octylamine.”, Journal of Industrial and Engineering Chemistry, 17 (2), 243-247, 2011.
    [16]Zhang, Chao, Kun Huang, PinhuaYu, and Huizhou Liu., “Sugaring-out Three-Liquid-Phase Extraction and One-Step Separation of Pt(IV), Pd(II) and Rh(III).”, Separation and Purification Technology, 87, 127-134, 2012.
    [17]Jha, Manis Kumar, Divika Gupta, Jae Chun Lee, Vinay Kumar, and Jinki Jeong., “Solvent Extraction of Platinum Using Amine Based Extractants in Different Solutions: A Review.”, Hydrometallurgy, 142, 60-69, 2014.
    [18]Nguyen, Thi Hong, Chong Ho Sonu, and Man Seung Lee., “Separation of Platinum(IV) and Palladium(II) from Concentrated Hydrochloric Acid Solutions by Mixtures of Amines with Neutral Extractants.”, Journal of Industrial and Engineering Chemistry, 32, 238-245, 2015.
    [19]Nguyen, Thi Hong, Batchu Nagaphani Kumar, and Man Seung Lee., “Selective Recovery of Fe(III), Pd(II), Pt(IV), Rh(III) and Ce(III) from Simulated Leach Liquors of Spent Automobile Catalyst by Solvent Extraction and Cementation.”, Korean Journal of Chemical Engineering, 33 (9), 2684-2690, 2016.
    [20]Nguyen, Thi Hong, Chong Ho Sonu, and Man Seung Lee., “Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from Concentrated Hydrochloric Acid Solutions by Solvent Extraction.”, Hydrometallurgy, 164, 71-77, 2016.
    [21]Nguyen, Thi Hong, and Man Seung Lee., “Effect of HCl Concentration on the Oxidation of LIX 63 and the Subsequent Separation of Pd(II), Pt(IV), Ir(IV) and Rh(III) by Solvent Extraction.”, Journal of Korean Institute of Metals and Materials, 54 (10), 768-774, 2016.
    [22]Truong, Hoai Thanh, Man Seung Lee, and Gamini Senanayake., “Separation of Pt(IV), Rh(III) and Fe(III) in Acid Chloride Leach Solutions of Glass Scraps by Solvent Extraction with Various Extractants.”, Hydrometallurgy, 175, 232-239, 2018.
    [23]Truong, Hoai Thanh, and Man Seung Lee., “Separation of Pd(II) and Pt(IV) from Hydrochloric Acid Solutions by Solvent Extraction with Cyanex 301 and LIX 63.”, Minerals Engineering, 115, 13-20, 2018.
    [24]Sun, P P, J Y Lee, and M S Lee., “Separation of Platinum(IV) and Rhodium(III) from Acidic Chloride Solution by Ion Exchange with Anion Resins.”, Hydrometallurgy, 113-114, 200-204, 2012.
    [25]Kononova, O N, A M Melnikov, T V Borisova, and A S Krylov., “Simultaneous Ion Exchange Recovery of Platinum and Rhodium from Chloride Solutions.”, Hydrometallurgy, 105 (3), 341-349, 2011.
    [26]Nikoloski, Aleksandar N., Kwang Loon Ang, and Dan Li., “Recovery of Platinum, Palladium and Rhodium from Acidic Chloride Leach Solution Using Ion Exchange Resins.”, Hydrometallurgy, 152, 20-32, 2015.
    [27]Genkin, A D, and T L Evstigneeva., “Associations of Platinum-Group Minerals of the Noril’sk Copper-Nickel Sulfide Ores.”, Economic Geology, 81 (5), 1203-1212, 1986.
    [28]Mpinga, C. N., J. J.Eksteen, C.Aldrich, and L.Dyer., “Direct Leach Approaches to Platinum Group Metal (PGM) Ores and Concentrates: A Review.”, Minerals Engineering, 78, 93-113, 2015.
    [29]Yoo, Jin S., “Metal Recovery and Rejuvenation of Metal-Loaded Spent Catalysts.”, Catalysis Today, 44 (1), 27-46, 1998.
    [30]https://www.azom.com/article.aspx?ArticleID=11593
    [31]Bard, A. J., Parsons, R., and Jordan, J.. Standard Potentials in Aqueous Solutions, Marcel Dekker, New York, 1985.
    [32]Ivanović, Saša Z., Trujuć, Vlastimir K., Gorgievski, Milan D., Mišić, Ljubiša D., Božić, and Draganas. Removal of platinum group metals from the spent automobile catalyst by the pyrometallurgical process. 15th International Research/Expert Conference, “Trends in the Development of Machinery and Associated Technology”, 12-18, 2011.
    [33]J Meija et al., “Atomic weights of the elements 2013(IUPAC Technical Report)”, Pure and Applied Chemistry, 88(3), 265-291, 2016.
    [34]https://environmentalchemistry.com/yogi/periodic/
    [35]U.S.Geological Survey, “Mineral Commodity Summaries 2015”, 2015.
    [36]U.S.Geological Survey, “Mineral Commodity Summaries 2016”, 2016.
    [37]U.S.Geological Survey, “Mineral Commodity Summaries 2017”, 2017.
    [38]U.S.Geological Survey, “Mineral Commodity Summaries 2018”, 2018.
    [39]U.S.Geological Survey, “Mineral Commodity Summaries 2019”, 2019.
    [40]南條道夫, “都市鉱山開発-包括的資源観による : リサイクルシステムの位置付け”, 東北大學選鑛製錬研究所彙報, 43, 239-251, 1988.
    [41]D.S.Smit, “The Leaching Behaviour of A Ni-Cu-Co Sulphide Ore in An Oxidative Pressure-Acid Medium”, Master’s thesis, Potchefstroomse Universiteit vir Christelike Hoer Onderwys, 2001.
    [42]Cieślik, Bartłomiej Michał, JacekNamieśnik, and PiotrKonieczka, “Review of Sewage Sludge Management: Standards, Regulations and Analytical Methods.”, Journal of Cleaner Production, 90, 1-15, 2015.
    [43]González, Isabel, María AuxiliadoraVázquez, Antonio JRomero-Baena, and CintaBarba-Brioso., “Stabilization of Fly Ash Using Cementing Bacteria. Assessment of Cementation and Trace Element Mobilization.”, Journal of Hazardous Materials, 321, 316-325, 2017.
    [44]Jhajharia, Rachee, DivyaJain, AkankshaSengar, AnkitGoyal, and P RSoni., “Synthesis of Copper Powder by Mechanically Activated Cementation.”, Powder Technology, 301, 10-15, 2016.
    [45]ndreas Nagel, Carina Winkler, Reinhold Carle, Hans-Ulrich Endress, Christine Rentschler, and Sybille Neidhart, “Processes involving selective precipitation for the recovery of purified pectins from mango peel”, Carbohydrate Polymers, 174, 1144-1155, 2017.
    [46]Izadi, Ahad, AliMohebbi, MinaAmiri, and NosratIzadi., “Removal of Iron Ions from Industrial Copper Raffinate and Electrowinning Electrolyte Solutions by Chemical Precipitation and Ion Exchange.”, Minerals Engineering, 113, 23-35, 2017.
    [47]Ryan, M J, A D Kney, and T L Carley., “A Study of Selective Precipitation Techniques Used to Recover Refined Iron Oxide Pigments for the Production of Paint from a Synthetic Acid Mine Drainage Solution.”, Applied Geochemistry, 79, 27-35, 2017.
    [48]Jianhua Kang, Wei Sun, Yuehua Hu, Zhiyong Gao, Runqing Liu, Qingpeng Zhang, Hang Liu, and Xiangsong Meng., “The Utilization of Waste By-Products for Removing Silicate from Mineral Processing Waste water via Chemical Precipitation.”, Water Research, 125, 318-324, 2017.
    [49]Onghena, Bieke, Chenna RaoBorra, TomVanGerven, and KoenBinnemans., “Recovery of Scandium from Sulfation-Roasted Leachates of Bauxite Residue by Solvent Extraction with the Ionic Liquid Betainium Bis(Trifluoromethylsulfonyl) Imide.”, Separation and Purification Technology, 176, 208-219, 2017.
    [50]Xie, Feng, Ting AnZhang, David Dreisinger, and Fiona Doyle., “A Critical Review on Solvent Extraction of Rare Earths from Aqueous Solutions.”, Minerals Engineering, 56, 10-28, 2014.
    [51]Yoshida, Wataru, YuzoBaba, FukikoKubota, NorihoKamiya, and MasahiroGoto., “Extraction and Stripping Behavior of Platinum Group Metals Using an Amic-Acid-Type Extractant.”, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 50 (7), 521-526, 2017.
    [52]Can, Mustafa, EmrahBulut, and MahmutÖzacar., “Synthesis and Characterization of Gallic Acid Resin and Its Interaction with Palladium(II), Rhodium(III) Chloro Complexes.”, Industrial & Engineering Chemistry Research, 51 (17), 6052-6063, 2012.
    [53]Sánchez, Bárbara S, Martín SGross, and Carlos AQuerini., “Pt Catalysts Supported on Ion Exchange Resins for Selective Glycerol Oxidation. Effect of Au Incorporation.”, Catalysis Today, 296, 35-42, 2017.
    [54]Schoeman, E, S MBradshaw, GAkdogan, C ASnyders, and J JEksteen., “The Extraction of Platinum and Palladium from a Synthetic Cyanide Heap Leach Solution with Strong Base Anion Exchange Resins.”, International Journal of Mineral Processing, 162, 27-35, 2017.
    [55]B. N Kokare, A. M Mandhare, and M. A Anuse., “Liquid - Liquid Extraction of Cerium (IV) From Salicyclate Media Using N-7V-Octylaniline in Xylene as an Extractant”, Journal of the Chilean Chemical Society, 55(4), 431-435, 2010.
    [56]Nagai, H., E.Shibata, and T.Nakamura., “Development of Methods for Concentration and Dissolution of Rh and Ru from Copper Slime.”, Hydrometallurgy, 169, 282-289, 2017.
    [57]Chen, Ailiang, Zhiwei Peng, Jiann Yang Hwang, Yutian Ma, Xuheng Liu, and Xingyu Chen., “Recovery of Silver and Gold from Copper Anode Slimes.”, Jom, 67 (2), 493-502, 2015.
    [58]Xing, Wei Dong, and Man Seung Lee., “Leaching of Gold and Silver from Anode Slime with a Mixture of Hydrochloric Acid and Oxidizing Agents.”, Geosystem Engineering, 20 (4), 216-223, 2017.
    [59]Khanlarian, Misagh, Fereshteh Rashchi, and Mojtaba Saba., “A Modified Sulfation-Roasting-Leaching Process for Recovering Se, Cu, and Ag from Copper Anode Slimes at a Lower Temperature.”, Journal of Environmental Management, 235, 303-309, 2019.
    [60]H. Veldbuizen, B. Sippel, “Mining discarded electronics”, Ind. Environ., 17
    (3) , 7-11, 1994.
    [61]胡少华., “铜阳极泥中金银及有价金属的回收”, 江西有色金属, 13 (3), 37-39, 1999.
    [62]Tümen, F, andN TBailey., “Recovery of Metal Values from Copper Smelter Slags by Roasting with Pyrite.”, Hydrometallurgy, 25 (3), 317-328, 1990.
    [63]Wang, Shixing, Wei Cui, Gengwei Zhang, Libo Zhang, and Jinhui Peng., “Ultra Fast Ultrasound-Assisted Decopperization from Copper Anode Slime.”, Ultrasonics Sonochemistry, 36, 20-26, 2017.
    [64]Dorfling, C, G Akdogan, S M Bradshaw, and J JEksteen., “Determination of the Relative Leaching Kinetics of Cu, Rh, Ru and Ir during the Sulphuric Acid Pressure Leaching of Leach Residue Derived from Ni–Cu Converter Matte Enriched in Platinum Group Metals.”, Minerals Engineering 24 (6), 583-589, 2011.
    [65]Liu, Weifeng, Tianzu Yang, Duchao Zhang, Lin Chen, and Younian Liu., “Pretreatment of Copper Anode Slime with Alkaline Pressure Oxidative Leaching.”, International Journal of Mineral Processing, 128, 48-54, 2014.
    [66]Dong, Haigang, Jiachun Zhao, Jialin Chen, Yuedong Wu, and Bojie Li., “Recovery of Platinum Group Metals from Spent Catalysts: A Review.”, International Journal of Mineral Processing, 145, 108-113, 2015.
    [67]Benson, M, C R Bennett, J EHarry, M K Patel, and M Cross., “The Recovery Mechanism of Platinum Group Metals from Catalytic Converters in Spent Automotive Exhaust Systems.”, Resources, Conservation and Recycling, 31 (1), 1-7, 2000.
    [68]Mishra R K, Reddy R G, Pyrometallurgical processing and recovery of precious metals from auto-exhaust catalyst using plasma arc smelting.,10th International Precious Metals Institute, Florida, 217-231,1986.
    [69]Kumar, J Rajesh, Hoo-In Lee, Jin-Young Lee, Joon-Soo Kim, and Jeong-Soo Sohn., “Comparison of Liquid–Liquid Extraction Studies on Platinum(IV) from Acidic Solutions Using Bis(2,4,4-Trimethylpentyl) Monothiophosphinic Acid.”, Separation and Purification Technology, 63 (1), 184-190, 2008.
    [70]Lee, Jin Young, B Raju, B Nagaphani Kumar, J Rajesh Kumar, Hyung Kyu Park, and B Ramachandra Reddy., “Solvent Extraction Separation and Recovery of Palladium and Platinum from Chloride Leach Liquors of Spent Automobile Catalyst.”, Separation and Purification Technology, 73 (2), 213-218, 2010.
    [71]Reddy, B Ramachandra, B Raju, Jin Young Lee, and Hyung Kyu Park., “Process for the Separation and Recovery of Palladium and Platinum from Spent Automobile Catalyst Leach Liquor Using LIX 84I and Alamine 336.”, Journal of Hazardous Materials, 180 (1), 253-258, 2010.
    [72]Sanuki, Sumiko, Yukako Matsumoto, and Hiroshi Majima., “Preparation of Ammonium Chloroplatinate by a Precipitation Stripping of Pt(IV)-Loaded Alamine 336 or TBP.”, Metallurgical and Materials Transactions B, 30 (2), 197-203, 1999.
    [73]N. Takeno, “Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases”, Natl. Inst.Adv. Ind. Sci. Technol. Tokyo, 419, 2005.

    下載圖示
    2024-07-25公開
    QR CODE