| 研究生: |
林哲丞 Lin, Che-Cheng |
|---|---|
| 論文名稱: |
新層狀金屬硫族化物之合成與鑑定 Synthesis and Characterization of New Layer Structural Metal Chalcogenide |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 層狀金屬硫化物 、ZnmIn2Sm+3 、Cu參雜 |
| 外文關鍵詞: | Layer Structure, Metal Chalcogenide, ZnmIn2Sm+3, Cu doping |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用固態反應法,在高溫900 ºC下合成出新穎層狀結構的金屬硫化物Cu0.66(16)Zn1.39(17)In2.98(21)S6.00(0) (1)。此化合物之結構屬於對稱中心的點群,其晶系及空間群為Trigonal P3 ̅m1,而單位晶格的軸長為a = 3.8748(9)Å,c = 18.776(4) Å。此化合物之結構主要由平行於ab平面並沿著c軸無限延伸的層狀骨架所構成,其順序為Cu/InS4-Zn/InS4-InS6-Zn/InS4-Cu/InS4形成平行於ab平面的層狀骨架結構。
此化合物經DTA量測具有熱穩定性,並與本實驗室先前合成的K1.51Zn0.74In4.60S8.00和文獻中ZnmIn2Sm+3做結構上和性質上的比較,顯示Cu的參雜有助於能隙(band gap)的降低與PL放光波長的增加。但此化合物之純相合成會伴隨ZnmIn2Sm+3的生成,因此純相的合成仍需進行探討。
A layer metal chalcogenide Cu0.66(16)Zn1.39(17)In2.98(21)S6.00(0) was synthesized by a solid-state reaction at 900 ºC by doping Cu and excess In in tunable layer metal chalcogenide ZnmIn2Sm+3. This structure crystallizes in a centrosymmetric space group of Trigonal P3 ̅m1 with cell parameters a = 3.8748(9) Å, c = 18.776(4) Å, V = 244.13(13) Å3, and Z = 6. This compound adopts same layer structure with Zn3In2S6, whose layer is parallel to ab plane and along c axis and constructed by corner-sharing In/CuS4 – In/ZnS4 – InS6 – In/ZnS4 – In/CuS4 polyhedral. The direct band gap determined by UV-vis-NIR absorption spectra is estimated to be around 1.98 eV. The differential thermal analysis data reveals that compound 1 is thermal stable under 900 ℃. The PL emission spectra is 689 nm. It needs more pure compound 1 for more precise property measurement. Designing the optimization of pure phase synthesis is in progress.
[1] D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, Opt. Commun., 1971, 3, pp. 29-31
[2] Boyd, G.; Kasper, H.; McFee, IEEE J. Quantum Electron, 1971, 7 (12), 563-573.
[3]Wagner, S.; Shay, J. L.; Migliorato, P.; Kasper, H. M., Appl. Phys. Lett. 1974, 25, 434-435.
[4] J. L. Shay, J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications, 1975, Pergamon, New York
[5] Kistaiah P., Murthy K.S., Iyengar L., Correlation Between the Structural Parameters and the Thermal Conductivity of Chalcopyrite-Type Ternary Compounds. In: Ashworth T., Smith D.R. (eds) Thermal Conductivity 18., 1985, Springer, Boston, MA
[6] Kuo, S.-M.; Chang, Y.-M.; Chung, I.; Jang, J.-I.; Her, B.-H.; Yang, S.-H.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F., Chem. Mater., 2013, 25, 2427-2433.
[7] Lai, W.-H.; Haynes, A. S.; Frazer, L.; Chang, Y.-M.; Liu, T.-K.; Lin, J.-F.; Liang, I. C.; Sheu, H.-S.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F., Chem. Mater., 2015, 27, 1316-1326.
[8] Novoselov, K. S. et al., Science, 2004, 306, 666–669
[9] Novoselov, K. S. et al., Proc. Natl Acad. Sci., 2005, 102, 10451–10453 (2005).
[10] A.K. Geim, I.V. Grigorieva, Nature, 2013, 499, 419-425
[11] K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science, 2016, 353, aac9439.
[12] R. Frisenda, et al., Chem. Soc. Rev., 2018, 47, 53-68
[13] Li Tao, Zefeng Chen, Xinming Li, Keyou Yan, Jian-Bin Xu, npj 2D Mater Appl., 2017, 1, 19,
[14] Youngwoo Son, Qing Hua Wang, Joel A. Paulson, Chih-Jen Shih, Ananth G. Rajan, Kevin Tvrdy, Sojin Kim, Bassam Alfeeli, Richard D. Braatz, and Michael S. Strano, ACS Nano, 2015, 9, 3, 2843–2855
[15] Wang, Q., Kalantar-Zadeh, K., Kis, A. et al., Nature Nanotech, 2012, 7, 699–712
[16] Kim, S., Konar, A., Hwang, W. et al., Nature Commun., 2012, 3, 1011
[17] Chhowalla, M., Jena, D. & Zhang, H., Nature Rev. Mater., 2016, 1, 16052
[18] J. Zhou , G. Tian , Y. Chen , X. Meng , Y. Shi , X. Cao , K. Pana and H. Fu , Chem. Commun., 2013, 49 , 2237 —2239
[19] Zhongjie Guan, Jingwen Pan, Qiuye Li, Guoqiang Li, and Jianjun Yang, ACS Sustainable Chem. Eng. 2019, 7, 7736−7742
[20] Kale, S. B.; Kalubarme, R. S.; Mahadadalkar, M. A.; Jadhav, H. S.; Bhirud, A. P.; Ambekar, J. D.; Park, C.; Kale, B. B. Phys. Chem. Chem. Phys. 2015, 17, 31850
[21] S. Shen, L. Zhao, Z. Zhou, L. Guo, J. Phys. Chem. C, 2008, 112, 16148–16155
[22] D. Jing, M. Liu, L. Guo, Catal. Lett., 2010, 140, 167–171
[23] Peng, S.; Li, L.; Wu, Y.; Jia, L.; Tian, L. L.; Srinivasan, M.; Ramakrishna, S.; Yan, Q.; Mhaisalkar, S. G. CrystEngComm 2013, 15, 1922
[24] S. Shen, L. Zhao, L. Guo, Int. J. Hydrogen Energy, 2010, 35, 10148–10154
[25] J. A. Beun, R. Nitsche, M. Lichtensteiger, Physica, 1960, 26 647-649
[26] V. Zhitar, Ya. Oksman, S. Radautsan V. Smirnov, Phys. Status Solidi (b), 1966, 15, K105-108
[27] Huang, F. Q.; Somers, R. C.; McFarland, A. D.; Duyne. R. P. V,; Ibers, J. A. , J. Solid State Chem. 2003, 174, 334-341.
[28] Rosario, A.-G.; Asiloe, J. M.; Dwight, R. A.-N.; Gerzon, E. D.; Santos, A. L.-R.; Andrew, N. F.; Andres, E. M.; John, W. S. , J. Appl. Cryst. 2006, 39, 1-5.
[29] Brese, N. E.; O'keeffe, M. , Acta Cryst. 1991, 47, 192-197.