| 研究生: |
賴昶旭 Lai, Chang-Shiu |
|---|---|
| 論文名稱: |
以輪軸滾動試驗機探討輪軌潤滑劑之表現 Performance of wheel/rail lubricant with Axle Rolling Machine |
| 指導教授: |
蕭志銘
Shiau, Jih-Min |
| 共同指導教授: |
郭振銘
Kuo, Chen-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 輪軸滾動試驗機 、旋轉編碼器 、標稱黏著係數 、潤滑材料 、潤滑距離 |
| 外文關鍵詞: | Axle rolling machine, incremental encoder, nominal adhesion coefficient, lubricant, lubrication distance |
| 相關次數: | 點閱:95 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
輪軌接觸黏著行為為軌道工程技術中極為重視的問題,包含軌道磨損、列車牽引制動、振動噪音、打滑及越線等交通事故。軌道的保養便相當重要,而輪軌間的潤滑可減少或防止這些事故的發生,本研究將會以試驗討論各種潤滑材料及輪軌潤滑狀態,除了輪軌潤滑狀態外,TRA在高雄鐵路地下化路段有潤滑劑用量過多導致成本問題,並討論潤滑劑用量影響及水的替代性。
本試驗使用自製的輪軸滾動試驗機結合旋轉編碼器,藉由量測即時電流、電壓及轉速等資料,以量測結果加上資料後處理計算出輪軌間的速度、標稱黏著係數及蠕滑率等資料,並加上各種現地使用的潤滑材料,以參考文獻及規範指南對量測結果進行比較及驗證。最後實際量測應用於輪軌界面的多種潤滑材料評估其標稱黏著係數及潤滑距離結果。
以台鐵軌測潤滑油用量的不同比較,顯示潤滑油用量20克比用量10克的潤滑距離長,上升的幅度約21.4%,其效果有明顯差異。在試驗中發現到水與潤滑材料的作用隨著水量變化,當水量少時,會與潤滑材料混合使潤滑距離增加,反之水量增多,反而會因洗淨潤滑材料使潤滑距離縮短。
The wheel-rail contact adhesion condition can cause various problems, including rail wear, vibration and noise, slipping and overrunning. Lubrication between the wheel and rail can reduce or prevent these accidents. This study will discuss various lubricants and wheel-rail lubrication condition through experiments, as well as the cost problem caused by excessive lubricant consumption in the underground section of the TRA Kaohsiung line, and discuss the influence of lubricant consumption and water substitution.
The axle rolling machine combined with the incremental encoder can obtain the speed between the wheel and the rail, the nominal adhesion coefficient and the creep rate. When the amount of lubricant is different, the lubrication distance is longer when the amount of lubricant is more than that of less, and its effect is significant. Tests have found that water and lubricants change their performance with changes in water volume. When the amount of water is small, it will mix with lubricant to increase the lubrication distance. When the amount of water increases, the lubrication distance will be shortened due to the cleaning of the lubricant.
1.Kalker, J.J., On the rolling contact of two elastic bodies in the presence of dry friction. 1967.
2.Kalker, J., Wheel-rail rolling contact theory. Wear, 144(1-2): p. 243-261, 1991.
3.RSSB, RSSB 公司, https://www.rssb.co.uk/.
4.Spiryagin, M., et al., Numerical calculation of temperature in the wheel–rail flange contact and implications for lubricant choice. Wear, 268(1-2): p. 287-293, 2010.
5.Wang, W., et al., Experimental study on adhesion behavior of wheel/rail under dry and water conditions. Wear, 271(9-10): p. 2699-2705, 2011.
6.Zhu, Y., Adhesion in the wheel-rail contact., KTH Royal Institute of Technology, 2013
7.Olofsson, U., Adhesion and friction modification, in Wheel–Rail Interface Handbook., Elsevier. p. 510-527, 2009
8.Magel, E., et al., Rolling contact fatigue, wear and broken rail derailments. Wear, 366-367: p. 249-257, 2016.
9.Ekberg, A. and E. Kabo, Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview. Wear, 258(7-8): p. 1288-1300, 2005.
10.陳威廷, 以光學輪廓感測器檢測鋼軌磨耗. 成功大學土木工程學系碩士論文, 2018.
11.Olofsson, U. and K. Sundvall, Influence of leaf, humidity and applied lubrication on friction in the wheel-rail contact: pin-on-disc experiments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(3): p. 235-242, 2004.
12.Chen, H., et al., Assessment of lubricant applied to wheel/rail interface in curves. Wear, 314(1-2): p. 228-235, 2014.
13.曹樂群, et al., 桃園機場捷運營運前運轉測試階段列車打滑情形之分析與檢討. 中興工程, (141): p. 83-96, 2018
14.Zhang, W., et al., Wheel/rail adhesion and analysis by using full scale roller rig. Wear, 253(1-2): p. 82-88, 2002.
15.Yamazaki, H.-o., M. Nagai, and T. Kamada, A study of adhesion force model for wheel slip prevention control. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 47(2): p. 496-501, 2004.
16.Gallardo-Hernandez, E.A. and R. Lewis, Twin disc assessment of wheel/rail adhesion. Wear,. 265(9-10): p. 1309-1316, 2008
17.Liu, Q.Y., B. Zhang, and Z.R. Zhou, An experimental study of rail corrugation. Wear, 255(7-12): p. 1121-1126. 2003.
18. 7641:2017, A., Rail Industry Safety and Standards Board(RISSB). 2017.
19.Thommesen, J., N.J. Duijm, and H.B. Andersen, Management of low adhesion on railway tracks in European countries. 2014.
20.RSSB, GE/RT8040 Low Adhesion between the Wheel and the Rail – Managing the Risk. 2009.
21.謝其安, 以單輪軸滾動試驗機初探與驗證蛇行動. 成功大學土木工程學系碩士論文, 2019.
22.LBFoster公司, Technical Data Sheet-KELTRACK Trakside Freight.
23.WHITMORE 公司, BioRail Technical Data Sheet.
24.Sadr, S., et al. Modeling of wheel and rail slip and demonstration of the benefit of maximum adhesion control in train propulsion system. in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE). 2014.
25.Matsumoto, A., et al., Creep force characteristics between rail and wheel on scaled model. Wear, 253(1-2): p. 199-203, 2002.
26.Wang, W., et al., Study on the adhesion behavior of wheel/rail under oil, water and sanding conditions. Wear, 271(9-10): p. 2693-2698 , 2011.