簡易檢索 / 詳目顯示

研究生: 呂昀積
Lu, Yun-Chi
論文名稱: 結合全像微影技術及光化學還原奈米金製作選擇性生成圖案化單層金奈米粒子分布
Combining holographic lithography and photoreduction of gold nanoparticles for selective generation of patterned monolayer gold nanoparticles distribution
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 153
中文關鍵詞: 全像微影技術SU-8 光化學還原單層金奈米粒子選擇性成長圖案化製作
外文關鍵詞: Holographic lithography, SU-8 photoreduction, Monolayer gold nanoparticles, Selective growth, Patterning
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii 致謝 x 目錄 xi 表目錄 xv 圖目錄 xxi 第 一 章 緒論 1 1.1 前言 1 1.2 研究動機 5 1.3 論文架構 6 1.4 內文縮寫 7 第 二 章 理論原理與文獻回顧 8 2.1 全像微影技術(Holographic lithography) 8 2.2 光化學還原法 14 第 三 章 研究方法 21 3.1 模具製作 21 3.1.1 矽母模具製作方法 21 3.1.2 全氟聚醚軟模具製作方法 23 3.2 使用LED曝光進行金奈米粒子還原製作 26 3.2.1 LED燈源曝光時實驗步驟及曝光架構設置 27 3.2.2 以冰塊輔助樣品降溫實驗步驟及曝光架構設置 28 3.2.3 以加熱板輔助樣品增溫實驗步驟及曝光架構設置 28 3.3 利用汞燈曝光進行金奈米粒子還原製作 31 3.3.1 實驗步驟及曝光架構設置 31 3.4 相位光罩製作 33 3.4.1 以PMMA光柵圖案為遮罩將鉻薄膜以濕式蝕刻法蝕刻 34 3.4.2 製作PMMA光柵圖案並進行正鍍鉻後舉離PMMA 36 3.4.3 以鉻光柵圖案作為遮罩並蝕刻石英玻璃製作相位光罩 37 3.5 400.5 nm雷射曝光測試 40 3.5.1 將雷射光入射至相位光罩後對SU-8進行曝光 40 3.5.2 將雷射光對SU-8進行曝光固化 41 3.6 使用LED曝光還原進行金奈米粒子的圖案化製作 44 3.6.1 圖案化前以LED向上曝光實驗步驟及曝光架構設置 45 3.6.2 以封閉空間輔助樣品增溫實驗步驟及曝光架構設置 45 3.6.3 以光罩曝光進行圖案化實驗步驟及曝光架構設置 46 3.6.4 經1次還原圖案化之樣品進行高次還原實驗步驟 46 3.7 實驗樣品光學影像之拍攝 49 3.8 實驗樣品光學顯微鏡(OM)及CCD相機影像量測 49 3.9 實驗樣品穿透率之量測 52 3.9.1 以光源及光譜儀直接進行穿透頻譜量測 52 3.9.2 以積分球及光譜儀進行穿透頻譜量測 53 3.10 電子顯微鏡(SEM)樣品表面及切面影像量測 55 3.11 原子力顯微鏡(AFM)檢測樣品表面影像量測 57 3.12 各種實驗透明材料及光源的頻譜量測 59 3.12.1 實驗使用透明材料之穿透頻譜(由3.9.2節方法量測) 59 3.12.2 實驗使用光源波長對強度之關係 59 3.13 確認400.5 nm雷射能否用於干涉式微影圖案化 64 第 四 章 實驗結果與討論 68 4.1 使用LED曝光進行金奈米粒子還原製作 68 4.1.1 370 nm LED還原效果比較及結論 68 4.1.2 370 nm LED及406.5 nm LED還原效果比較及結論(1) 78 4.1.3 370 nm LED及406.5 nm LED還原效果比較及結論(2) 81 4.1.4 LED還原方法與汞燈還原方法比較及結論 83 4.1.5 370 nm LED及406.5 nm LED還原效果比較及結論(3) 87 4.1.6 370 nm LED不同高度還原效果 90 4.1.7 LED曝光進行金奈米粒子還原製作的重複性 94 4.2 相位光罩(Phase mask)製作 95 4.2.1 以PMMA光柵圖案為遮罩將鉻薄膜以濕式蝕刻法蝕刻 95 4.2.2 製作PMMA光柵圖案並進行正鍍鉻後舉離PMMA 99 4.2.3 以鉻光柵圖案作為遮罩並蝕刻石英玻璃製作相位光罩 102 4.3 400.5 nm雷射曝光測試 105 4.3.1 將雷射光入射至相位光罩後對SU-8進行曝光 105 4.3.2 將雷射光對SU-8進行曝光固化 108 4.4 使用LED曝光還原進行金奈米粒子的圖案化製作 111 4.4.1 圖案化前以370 nm LED向上曝光還原效果比較及結論 111 4.4.2 以封閉空間輔助樣品增溫之曝光還原效果比較及結論 114 4.4.3 以光罩曝光進行圖案化之曝光還原效果比較及結論 119 4.5 改良還原流程與實驗參數最佳化 125 4.5.1 樣品進行曝光還原前對於SU-8預固化之要求 125 4.5.2 以優化後參數及固有參數進行汞燈還原之比較 130 4.5.3 調控SU-8預固化時間及HAuCl4溶液濃度 133 4.5.4 以還原參數最佳化進行圖案化製作 138 4.6 驗證樣品是否需要SU-8才可進行化學還原 142 第 五 章 結論與展望 144 5.1 結論 144 5.1.1 光化學還原實驗結果歸納 144 5.1.2 全像微影技術難以結合光化學還原的因素 146 5.2 未來展望 147 5.3 參考文獻 149

    1. W.-K. Kim, S. Lee, D. Hee Lee, I. Hee Park, J. Seong Bae, T. Woo Lee, J.-Y. Kim, J. Hun Park, Y. Chan Cho, and C. Ryong Cho, "Cu mesh for flexible transparent conductive electrodes," Scientific reports 5, 1-8 (2015).
    2. I. Saleem and W.-K. Chu, "Gold nano-ripple structure with potential for bio molecular sensing applications," Sensing and Bio-Sensing Research 11, 14-19 (2016).
    3. T. Matsui and H. Iizuka, "Effect of finite number of nanoblocks in metasurface lens design from bloch-mode perspective and its experimental verification," ACS Photonics 7, 3448-3455 (2020).
    4. Y. Lee, M.-K. Park, S. Kim, J. H. Shin, C. Moon, J. Y. Hwang, J.-C. Choi, H. Park, H.-R. Kim, and J. E. Jang, "Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator," ACS Photonics 4, 1954-1966 (2017).
    5. S.-M. Lee, A. Kwong, D. Jung, J. Faucher, R. Biswas, L. Shen, D. Kang, M. L. Lee, and J. Yoon, "High performance ultrathin GaAs solar cells enabled with heterogeneously integrated dielectric periodic nanostructures," ACS nano 9, 10356-10365 (2015).
    6. S. M. Novikov, S. Boroviks, A. B. Evlyukhin, D. E. Tatarkin, A. V. Arsenin, V. S. Volkov, and S. I. Bozhevolnyi, "Fractal shaped periodic metal nanostructures atop dielectric-metal substrates for SERS applications," ACS Photonics 7, 1708-1715 (2020).
    7. L. L. Yuan and P. R. Herman, "Laser scanning holographic lithography for flexible 3D fabrication of multi-scale integrated nano-structures and optical biosensors," Scientific reports 6, 1-15 (2016).
    8. N. A. Cinel, S. Cakmakyapan, S. Butun, G. Ertas, and E. Ozbay, "E-Beam lithography designed substrates for surface enhanced Raman spectroscopy," Photonics and Nanostructures-Fundamentals and Applications 15, 109-115 (2015).
    9. D. Eschimese, F. Vaurette, D. Troadec, G. Leveque, T. Melin, and S. Arscott, "Size and shape control of a variety of metallic nanostructures using tilted, rotating evaporation and lithographic lift-off techniques," Scientific reports 9, 1-9 (2019).
    10. T. Handte, N. Scheller, L. Dittrich, M. W. Thesen, M. Messerschmidt, and S. Sinzinger, "Manufacturing of nanostructures with high aspect ratios using soft UV-nanoimprint lithography with bi-and trilayer resist systems," Micro and Nano Engineering 14, 100106 (2022).
    11. Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, "Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference," Nanotechnology 24, 235202 (2013).
    12. W.-E. Lu, Y.-L. Zhang, M.-L. Zheng, Y.-P. Jia, J. Liu, X.-Z. Dong, Z.-S. Zhao, C.-B. Li, Y. Xia, and T.-C. Ye, "Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction," Optical Materials Express 3, 1660-1673 (2013).
    13. P. Kunwar and P. Soman, "Direct laser writing of fluorescent silver nanoclusters: a review of methods and applications," ACS applied nano materials 3, 7325-7342 (2020).
    14. C. Xing, D. Liu, J. Chen, Y. Fan, F. Zhou, K. Kaur, W. Cai, and Y. Li, "Convective Self-Assembly of 2D Nonclose-Packed Binary Au Nanoparticle Arrays with Tunable Optical Properties," Chemistry of Materials 33, 310-319 (2020).
    15. Y.-J. Chen, W.-H. Chang, C.-Y. Li, Y.-C. Chiu, C.-C. Huang, and C.-H. Lin, "Direct synthesis of monolayer gold nanoparticles on epoxy based photoresist by photoreduction and application to surface-enhanced Raman sensing," Materials & Design 197, 109211 (2021).
    16. Y.-J. Chen, W.-H. Chang, and C.-H. Lin, "Selective Growth of Patterned Monolayer Gold Nanoparticles on SU-8 through Photoreduction for Plasmonic Applications," ACS Applied Nano Materials 4, 229-235 (2020).
    17. Y. Song, P. D. Nallathamby, T. Huang, H. E. Elsayed-Ali, and X.-H. N. Xu, "Correlation and characterization of three-dimensional morphologically dependent localized surface plasmon resonance spectra of single silver nanoparticles using dark-field optical microscopy and spectroscopy and atomic force microscopy," The Journal of Physical Chemistry C 114, 74-81 (2010).
    18. O. Kapon, M. Muallem, A. Palatnik, H. Aviv, and Y. R. Tischler, "A simplified method for generating periodic nanostructures by interference lithography without the use of an anti-reflection coating," Applied Physics Letters 107, 201105 (2015).
    19. C. Chen, C.-G. Wang, L. Xiao, and A. Goto, "Photo-selective chain end transformation of polyacrylate-iodide using cysteamine and its application to facile single-step preparation of patterned polymer brushes," Chemical Communications 54, 13738-13741 (2018).
    20. N. G. Quilis, S. Hageneder, S. Fossati, S. K. Auer, P. Venugopalan, A. Bozdogan, C. Petri, A. Moreno-Cencerrado, J. L. Toca-Herrera, and U. Jonas, "UV-Laser Interference Lithography for Local Functionalization of Plasmonic Nanostructures with Responsive Hydrogel," The Journal of Physical Chemistry C 124, 3297-3305 (2020).
    21. E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, "Fabrication of periodic micro-structures by holographic lithography," Lithuanian Journal of Physics 53(2013).
    22. C.-H. Lin, Y.-C. Lin, and C.-C. Liang, "Solid immersion interference lithography with conformable phase mask," Microelectronic engineering 123, 136-139 (2014).
    23. X. Li, K. Ni, Q. Zhou, X. Wang, R. Tian, and J. Pang, "Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method," Optics express 24, 10759-10766 (2016).
    24. E. Stankevičius, E. Daugnoraitė, and G. Račiukaitis, "Mechanism of pillars formation using four-beam interference lithography," Optics and Lasers in Engineering 116, 41-46 (2019).
    25. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics (Cambridge University Press, 2017), pp. p. 230-231.
    26. M. R. Douglass, "Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD)," in 1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No. 98CH36173), (IEEE, 1998), 9-16.
    27. H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, "Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal," Nature Photonics 3, 534-540 (2009).
    28. A. Georgieva, A. V. Belashov, and N. V. Petrov, "Optimization of DMD-based independent amplitude and phase modulation by analysis of target complex wavefront," Scientific reports 12, 1-13 (2022).
    29. T. Yoon, C.-S. Kim, K. Kim, and J.-r. Choi, "Emerging applications of digital micromirror devices in biophotonic fields," Optics & Laser Technology 104, 17-25 (2018).
    30. C. Slinger, C. Cameron, and M. Stanley, "Computer-generated holography as a generic display technology," Computer 38, 46-53 (2005).
    31. F. Knorr, A. Uyttendaele, J. Stauch, F. Schechtel, Y. Reg, and M. Zimmermann, "Large-angle programmable direct laser interference patterning with ultrafast laser using spatial light modulator," Physics Procedia 83, 1170-1177 (2016).
    32. G. K. Oster and G. Oster, "Photoreduction of metal ions by visible light1," Journal of the American Chemical Society 81, 5543-5545 (1959).
    33. S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, "Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction," ACS Nano 5, 1947-1957 (2011).
    34. E. Nadal, N. Barros, L. Peres, V. Goetz, M. Respaud, K. Soulantica, and H. Kachachi, "In situ synthesis of gold nanoparticles in polymer films under concentrated sunlight: control of nanoparticle size and shape with solar flux," Reaction Chemistry & Engineering 5, 330-341 (2020).
    35. J. L. Dektar and N. P. Hacker, "Photochemistry of triarylsulfonium salts," Journal of the American Chemical Society 112, 6004-6015 (1990).
    36. W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, "Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography," Journal of applied physics 97, 054907 (2005).
    37. M. Sangermano, Y. Yagci, and G. Rizza, "In situ synthesis of silver-epoxy nanocomposites by photoinduced electron transfer and cationic polymerization processes," Macromolecules 40, 8827-8829 (2007).
    38. Y. Yagci, M. Sangermano, and G. Rizza, "Synthesis and characterization of gold-epoxy nanocomposites by visible light photoinduced electron transfer and cationic polymerization processes," Macromolecules 41, 7268-7270 (2008).
    39. D. R. Tyler, "Mechanisms for the Formation of NH3, N2H4, and N2H2 in the Protonation Reaction of Fe (DMeOPrPE) 2N2 {DMeOPrPE= 1, 2‐bis [bis (methoxypropyl) phosphino] ethane}," Zeitschrift für anorganische und allgemeine Chemie 641, 31-39 (2015).
    40. W. Lai, C. Li, H. Chen, and S. Shaik, "Hydrogen‐abstraction reactivity patterns from A to Y: The valence bond way," Angewandte Chemie International Edition 51, 5556-5578 (2012).
    41. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic engineering 83, 1798-1804 (2006).
    42. K. A. Materials, "SU-8 3000 Technical Data Sheet" (2020), retrieved https://kayakuam.com/products/su-8-3000/.

    無法下載圖示 校內:2028-02-06公開
    校外:2028-02-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE